Template B

Steps to the approval process:
1. Complete the applicable template(s) and email them to the departmental or program curriculum committee chair.
2. The curriculum chair emails the proposal to the curriculum committee, then to the department/program faculty for a vote and finally to the

department/program chair.

)4 led-

Lt Ppp- 4315
Stng e Bpp-/2%/§

Course Revision/Deletion Template

3. The department/program chair emails the proposal to curriculum-approval@iup.edu; this email will also serve as an electronic signature.
4. Curriculum committee staff will log the proposal, forward it to the appropriate dean’s office(s) for review within 14 days and post it on the X Drive for
review by all [UP faculty and administrators. Following the dean's review the proposal goes to the UWUCC/UWGC and the Senate.

5. Questions? Email curriculum-approval@iup.edu.

Contact Dr. David T. Smith Email dtsmith@iup.edu
Person: Address:

Proposing Computer Science Phone: 724-357-4478
Depart/Unit:

Category A: [Course Prefix/Number Change

Category B: X Catalog Description Change

Category C: [J Add Dual Level
[J Add Distance Education (¢omplet remplare 1)
[J Credit Hour Change

[J Course Title Change
[J Modify Prerequisite(s)
[0 Add Liberal Studies (¢ omplete template €)
[0 Add/Revise TECC (Complete Template D)

[Other - Click here to enter text.

Course Revisions (Check all that apply; fill out categories below as specified, i.e. if only changing a course title, only need to complete Category A information; if Category
B need information in both A and B; For Category C, complete entire form):

[Course Deletion

Click here to enter text.

[J Change in Class/Lab Hours

X Course Revision

Current Prefix Click here to enter text. Proposed Prefix
Current Number Click here to enter text. Proposed Click here to enter text.
Number
Current Course | Click here to enter text. Proposed Course | Click here to enter text.
Title Title
Click here to enter text. Proposed Click here to enter text.

Prerequisite(s) pmiuisiteisi _

Template B

Current Catalog
Description

Prerequisite: Grade of C or better in COSC 300 and 310,
or permission of instructor

Concepts and techniques of systems programming with an
emphasis on assembly, linking, loading, and macro
processing for user programs. Overviews of higher-level
language translation and system control. Programming and
research projects.

Proposed Catalog
Description

Prerequisite: Grade of C or better in COSC 300 and 310, or
permission of instructor

An in-depth introduction to a systems programming, system
programming language(s) and application of those
language(s) to systems level problems. The focus will be on
programming constructs that are closely aligned with the
architecture of a digital computer including those providing
portability between platforms, dynamic allocation and
management of virtual memory, complex in-memory data
structures, reading/writing binary data using sequential and
random access, pointer arithmetic/manipulation, and
interaction between threads/processes

Category C (if not changed leave blank)

Number of
Credits

(UG) Class Hours — Click here to enter text.
(UG) Lab Hours — Click here to enter text.
Credits - Click here to enter text.

Number of
Credits

(UG) Class Hours — Click here to enter text.
(UG) Lab Hours — Click here to enter text.
Credits - Click here to enter text.

Current Course
(Student
Learning)
Outcomes

A. Analyze an assembly language to determine the
complexity of the assembler and the architecture of the
machine that it runs on.

B. Describe several ways the passes of an assembler can
be constructed to accommodate the architecture and
loading.

C. Write a two-pass assembler that creates object
modules for programs written in a simple assembly
language.

D. Describe how a linker/loader creates an executable
program from an object module and write such a
linker/loader for a simple two-pass assembler.

E. Describe how a macro processor works and write a

simple one.

Describe the phases of compilation.

Describe the functioning of the principal parts of an

operating system.

H. Use the systems programming problem solving
approach.

Qm

Proposed Course
(Student
Learning)
Outcomes

1. Enumerate and explain the function of the common
operating system kernel routines that are provided by an
operating system and accessible from a systems
programming language.

2. Design, write, and test moderately complicated low-level
programs using a systems programming language.

3. Proficiently use a preprocessor to implement code that is
portable between different computing platforms.

4. Implement routines that read and write structured binary
files such as word processing documents, index systems,
or serialized hierarchical data.

5. Use operating system kernel calls from within a
programming language to allocate/free virtual memory,
initiate and synchronized multiple threads/processes,
interact with the file system, set and respond to
timers/interrupts.

6. Implement routines that implement complex data
structures which superimpose arrays, records, and
references on unstructured blocks of memory.

7. Implement programs that exploit the use of pointers to
improve efficiency.

Template B

1. What is System Programming? (4 hrs) 1. System Programming and what languages are used? 2 hrs
A. Discussions of the assignments A. What is Systems Programming
B. Explanations of specific system features B. Explanations of specific system features
C. Suggestions on use of resources C. Assembly for systems programming
D. Overview of high level system programming languages
2. Operating system functions (3 hrs)
A. Device management 2. Operating system functions 3 hrs
B. Memory management A. Device management
C. CPU management B. Memory management
D. File system management C. Process management
E. Accounting and security D. File system management
F. User services E. Accounting and security
F. User services
3. Machine Considerations for Assemblers (3 hrs)
A. Instruction Formats 3. Case study of a high level systems programming language 6 hrs
B. Instruction Types A. Data types, operators, expressions
C. Addressing Modes B. Flow of control
D. Addressable Units and Address Spaces C. Functions and program structure
E. Registers Brief Course D. Scopes
F. Data Types and Representations Outline (v E. Pointers, arrays, structures, and unions
Brief Course sufficient detail (o F. Basic input and output
Outline 11/ is 4. Assembly Language Forms Wh oot :’4/;;\
acceptable to cop) A. Statement Formats across campus. It is 4. Machine considerations and portability 3 hrs
(’:ll},’;,,'\'f Ne-ai B. Directives not necessary 1o A. Instruction formats/types between platforms
C. Literals i /’I"" g ;”" : B. Addressing modes and address spaces between platforms
,,”,L',’:,Lu\ S C. Registers between platforms
5. Assembly Process D. Data representations between platforms
A. Data Bases (2 hrs) E. Preprocessor directives and portability
(1) Fixed Tables (Opcodes and Directives) F. Macros, inline assembly, and typdefs
(2) Dynamic Tables (Symbols and Literals)
(3) Organization and Access Exam 1 1.5 hrs
B. Pass 1 Actions (4 hrs) 5. Modularization and program assembly 2 hrs
(1) Building Tables A. Multi-file development (interfaces, APIs, header files, make
(2) Keeping the Location Counter files)
(3) Error Handling A. Libraries, archives, and shared objects
(4) Handling Multiple CSECTs B. Dynamic and static linking
C. Pass 2 Actions (3 hrs) 6. Memory Management 3 hrs
(1) Error Handling A. Arrays, records, unions from a memory perspective
(2) Parsing Operands and Expressions B. Allocation and de-allocation of memory from the operating
(3) Code Generation system
C. Pointer casts, arithmetic, navigation, and field references
D. One-Pass Assemblers (1 hr) D. Memory corruption issues, detection and resolution

Template B

6. Linking and Loading
A. Object Files (4 hrs)
(1) Relocation Information
(2) Unresolved Forward References
(3) Inter-PSECT References
(4) External References
(5) Record Forms

B. Linking Tasks

(1 hr)

(Allocation, Relocation, Resolution and Loading)

C. Approaches/Implementations (4 hrs)
(1) Absolute Loader
(2) Transfer Vectors
(3) Direct Linking Loaders
(4) Linkage Editor
(5) Dynamic Loading
(6) Dynamic Linking

D. Effects of Memory Management Approaches (1 hr)

7. Macro Processing (6 hrs)
A. Types of Macros
B. Definitions (including nesting)
C. Invocation (including nesting)
D. Expansion, Substitution, and Labels
E. Macro Processor Organizations
F. Interaction with the Assembler
G. Functions and Loops

8. Compilation process (3 hrs)
A. Lexical analysis
B. Syntax analysis (parsing)
C. Semantic analysis
D. Storage allocation
E. Code generation and optimization

7. Input/Output at a systems level
A. Binary input and output
B. Sequential and random access
C. On-disk data structures
D. Indexes and other organizational structures

8. Device drivers

9. Files systems and directories
A. File system and directory architecture
B. Disk architecture
C. Access and update of directory attributes
D. File Permissions

Exam 2

10. Process management
A. Threads
B. Spawning processes
C. Sleep, wait, and nap
D. Synchronization

11. Inter-process communication
A. Pipes
B. Sockets
C. Signals and signal handlers
D. Shared memory
E. Secure Sockets
F. Certificates

12. Object-Oriented extensions of a systems programming
language
A. Class definition including constructors and destructors
B. Encapsulation, inheritance, polymorphism
C. Derived classes, abstract classes. multiple inheritance
D. Generics/templates
E. Operator overloading
F. Exception handling

3 hrs

2 hrs

3 hrs

1.5 hrs

3 hrs

3 hrs

6 hrs

Template B

Total 42 hrs

Final 2 hrs

Rationale for Proposed Changes (All Categories)

This course has not been taught in over fifteen years and has not been updated in over twenty years. The course as described
in the last known syllabus of record is archaic with respect to today’s state of the computing. The original focus on
Why is the course being developing an assembler is now obsolete. Therefore the description, course outcomes, and objectives have been significantly
revised/deleted: revised to be consistent with the “Systems Programming” courses offered by a dominant portion of universities including
Rutgers, California Polytechnic State University, University of Pittsburgh, University of Georgia, and University of
Birmingham.
Implication of the Change on: Implications on the Computer Science Program: This change will allow the department to offer the course in a format that
- Program provides up-to-date content, therefore, it can again be offered as an elective in all 3 tracks.
- Other programs
- Students
List additional learning objectives for the higher-level course
For Dual Listed Courses N/IA] e B e
For Dean’s Review
® Are resources available/sufficient for this course? [] Yes J No 0 NA
® Is the proposal congruent with college mission? L] Yes ONo [ONA
® Has the proposer attempted to resolve potential conflicts with other academic units? [] Yes J No LI NA

Comments: Click here to enter text.

