g - |
H
i
A

2 d

i -/
LSC Use Only | | UWUCC USE Only €/ ,
Number: , otii=a | Number S-S5 T
Submission Date: LH Janl SITUUIEY Submission Date:
Action-Date: T Action-Date: /ﬂ).o [0]/9/6/
CURRICULUM PROPOSAL COVER SHEET Q’WJ‘* Aff 1344/
University-Wide Undergraduate Curriculum Committee
A CONTACT
Contact Person_Charles Shubra Phone__357-7917

Department__Computer Science

Il PROPOSAL TYPE (Check All Appropriate Lines)
COURSE

Suggested 20 character litle

New Course*

Course Number and Full Title

X Course Revision COSC 319 Software Engineering Concepts

Course Number and Full Title

Liberal Studies Approval+
for new or existing course

Course Number and Full Title

Course Deletion

Course Number and Full Title

Number and/or Title Change

Old Mumber and/or Full Old Title

New Number and/or Full New Title

Course or Catalog Description Change

Course Number and Full Title
PROGRAM: Major Minor Track

New Program®

Program Mame

Program Revision®

Program Name

Program Deletion®

Program Name

- | Title Change

— | Old Pregram Name
(o .
4

New Program Name

“Tit-;| Approvals (signatures and date)

—— ATV L. %z{w@

/Deba lCumcufum Committee Depart_;/r{‘ﬁChan ’

— X/fl% ‘l (,ﬁ

.(/College Curriculum Corgmm«if %M’,

+Director of Liberal Studies (where applicable) *Brovost (wher /aﬁphcab[e)

Part II. Description of Curriculum Change
1. New Syllabus of Record
2. Summary of the proposed revision

Change the prerequisite for COSC 319, Software Engineering Concepts, from COSC 315 to COS
220 and COSC 310.

3. Justification for the revision

The original prerequisite for COSC 319 was meant to assure that students had experienced enough
software development to engender a sufficient level of programming maturity. COSC 315, which
was a second programming course using COBOL as the programming language provided such
maturity. Since COSC 315 is being eliminated from the Computer Science curriculum, another
set of prerequisites has been identified to assure an acceptable level of programming maturity.
Since at least 1/3 of the material originally in COSC315 has migrated to COSC 220, it makes
sense to include COSC 220 in the new prerequisites for COSC 319. However, since COSC 220
did not inherit all of the subject matter from COSC 315 an additional course has been included in
the prerequisite. That additional course is COSC 310; COSC 310 will provide both the data
structures and the additional programming maturity seen as necessary by the faculty.

4. Old Syllabus of Record

5. Letters of Support

COSC 319 Appendix A
Software Engineering Concepts

Syllabus of Record
L Catalog Description Programming
3 credits
3 lecture hours
O lab hours
(3c-01-3sh)
COSC 319

Prerequisites: COSC 220 and 310 or permission of the instructor

Software engineering concepts include the collection of tools, procedures, methodologies
and accumulated knowledge about the development and maintenance of software based
systems. This course is strongly suggested for any student planning to take an internship
in Computer Science. After an overview of the phases of the software lifecycle, current
methodologies, tools and techniques being applied to each phase will be discussed in
depth with localized exercises given to reinforce learning of concepts.

II. Course Objectives
This course will serve to broaden the student's understanding of the issues and latest
developments in the area of software development and maintenance. To reach this goal,

the following objectives need to be met:

1. Define the current state of software development and maintenance characterized as
"the software crisis".

2. Understand the multidimensional aspect of software engineering, which is the
current best attempt at solving the software crisis.

3. Become familiar with popular models of the software development and
maintenance process.

4. Using the waterfall model, study the inputs, outputs, and processes present in each
phase.

5. Study the core concepts present in several popular methodologies and be able to
identify strengths and weaknesses of each.

6. Study existing CASE tools to be able to identify opportunities to automate tasks
through the use of such tools.

7. Consider the issues and techniques present in confidence gaining measures
residing in each phase of the software lifecycle.

III.

8. Briefly investigate problems present in project management.

Course Qutline

The following subjects will be addressed:

IV.

V.

The Software Crisis and Software
Engineering

The Software Life Cycle - A Model of
Software Development

Requirements Analysis

Design Issues

Design Methodologies
Implementation Techniques
Development Tools

Software Quality

Programming Environments
Management of Software Development
Maintenance

CRermommg O W

Evaluation Methods

Course Introduction and Administration

Generic Code and Automatic Code Generation

0.5 hours
3.0 hours

1.5 hours

1.5 hours
3.0 hours
6.0 hours
3.0 hours
3.0 hours
6.0 hours
6.0 hours
3.0 hours
3.0 hours
3.0 hours

Grades will be determined by taking the weighted (to approximate the distribution of

points below) point total and identifying where 90%, 80%, 70%, 60% of the total points
lies.

Points and percentages are allocated as follows:

2 exams (including final) 30%

Papers 30%

Projects 30%

Homework 10%

TOTAL 100%
Suggested Textbook

300 points (150 points each)

300 points
300 points
100 points
400 points

Schach, Stephen, Classical Object-Oriented Software Engineering with UML and

C++, Fourth Edition, McGraw Hill, 1999.

VI. Bibliography

1.

2.

Braude, Eric J., Software Engineering, An Object-Oriented Perspective, Wiley,
2001.
Fowler, Martin and Scott, Kendall, UML Distilled, 2" Edition, Addison-Wesley,

2000.

. Pressman, Roger S., Software Engineering, A Practitioner's Approach, 5t Edition,

McGraw Hill, 2001.
Sommerville, Ian, Software Engineering, 6™ Edition, Addison-Wesley, 2001.

Old Syllabus of Records

CATALOG DESCRIPTION Appendix B
COSC 319 3c-01-3sh
Prerequisites: COSC 315 or permission of the instructor

Software engineering concepts include the collection of tools,
procedures, methodologies and accumulated knowledge about the
development and maintenance of software based systems. This course
is strongly suggested for any student planning to take an

internship in Computer Science. After an overview of the phases of
the software lifecycle, current methodologies, tools and techniques
being applied to each phase will be discussed in depth with
localized exercises given to reinforce learning of concepts.

COURSE GOALS AND OBJECTIVES

This course will serve to broaden the student's understanding
of the issues and latest developments in the area of software
development and maintenance. To reach this goal, the following
objectives need to be met:

1. Define the current state of software development and
maintenance characterized as "the software crisis".

2. Understand the multidimensional aspect of software
engineering which is the current best attempt at solving
the software crisis.

3. Become familiar with popular models of the software
development and maintenance process.

4. Using the waterfall model, study the inputs, outputs, and
processes present in each phase.

5. Study the core concepts present in several popular
methodologies and be able to identify strengths and
weaknesses of each.

6. Study existing CASE tools to be able to identify
opportunities to automate tasks through the use of such
tools.

7. Consider the issues and techniques present in confidence
gaining measures residing in each phase of the software

lifecycle.
8. Briefly investigate problems present in project
management.
COURSE OUTLINE Fall, 1989

This course will serve to broaden the student's understanding
of the issues and latest developments in the critical area of
software design and development. The course will be conducted as
a seminar, collections of papers will be read and actively
discussed in class. The teacher will lead most of the discussions,
but the students will be expected to participate in the
discussions. Questions have been formulated which will serve as
the basis of the discussion. Before coming to class, students
should read (perhaps reread ...) and summarize the assigned
article(s). This summary should be a page of notes that capture
the important points of the article. Students should also attempt
to answer the discussion questions. The answers do not have to be
written, but a valid attempt should be made to structure an answer
to each question.

A student's grade will be determined by his performance in the
discussions, projects, quizzes and exams.

The following subjects will be addressed:

Class
Topic Hours Subject

.5 Course Introduction and Administration

3.0 The Software Crisis and Software
Engineering

3 1.5 The Software Life Cycle - A Model of
Software
Development

1.5 Requirements Analysis

3.0 Design Issues

6.0 Design Methodologies

3.0 Implementation Techniques

3.0 Development Tools

6.0 Software Quality

6.0 Generic Code and Automatic Code Generation

N —

—
O\DOO\)O\LA-‘;

11 3.0 Programming Environments
12 3.0 Management of Software Development
13 3.0 Maintenance

What follows is an overview of the topics, including a reading
list for each topic.

Topic: Readings:
1 Course Introduction and Administration
a. Syllabus and Course Introduction
2 Software Crisis and Software Engineering

a. Zelkowitz, M.V., "Perspectives on
Software Engineering", Computing Surveys,
Vol. 10, No. 2, June, 1978, pp. 197-216.

b. Brooks, F. P., "No Silver Bullet: Essence
and Accidents of Software Engineering",
COMPUTER, Vol. 19, No. 4, pp. 10-19.

c. Goldberg, R., "Software Engineering: An
Emerging Discipline", IBM Systems
Journal, Vol. 25, No. 314, 1986, pp.
334-353.

d. Brooks, Frederick P., The Mythical Man-
Month, Addison-Wesley Publishing Company,
Reading, Mass. (1980), Chapters 1, 2 & 3.

Discussion Questions for Topic 2 (Software Engineering)

1. What is software? List the five major
problems with software in order of
importance. What does the future of the
software problem look like?

2. Define Software Engineering. What is it
composed of? What is it about? Why is
it less successful than other Engineering
Disciplines?

3. From your experience, have you
encountered the "software crisis"? What
form of software engineering have you
seen practiced? (Exclude course
experience at IUP.)

4. How does a Software Engineer differ from:
a programmer, an analyst, a coder, a

