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Preface

The contents in the document are a crash course in the material that a
student will need to be successful when starting out as a graduate student
in Applied Mathematics and Data Science. The contents contained herein
are by no means all encompassing. They only serve as a refresher on some
topics that for some students may have started to fade. These materials
will serve as starting exposure to topics that will help students finding
their path when starting graduate studies.
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Chapter 1

Mathematical
Typesetting

LATEX is a a markup language commonly used in mathematical typeset-
ting. The typsetting system as it is currently known started with Donald
Knuth in 1977 when he started writting TEX. The idea was to create a
powerful and flexible typsetting utility. The markup system that Knuth
created is especially good for mathematics.

Modern LATEXis the product of Leslie Lamport (1980) where com-
mands were added over the standard TEXṪhe for LATEXwas to separate
content from style enabling structured documents. The power of this
form of document typesetting is that it will automates numbering, cross-
referencing, bibliography, index, etc, so that the author doesn’t need to
continually and manually track and update these items.

The advantages of using LATEX for mathematics are many:

1. The tool is free!

2. Designed for scientific texts!

3. It is a structured document markup language.

4. Gives authors much greater control of formatting when compared
to other document formatting systems.

5. The tool is easily scalable.

6. Users can program in the markup language and thus easily extend
it.

7. Documents created in LATEX are portable.

1
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1.1 Software Packages and Setting Up
LATEX Editors

To get started without the pain of installing software, their are several
web based programs where you can typeset in LATEXȮverleaf is a common
place for new users to start that offers templates that can be adapted to
most situations. New users are recommended to check out:

https://www.overleaf.com

as a key starting place.
Users can also typeset LATEX documents directly on CoCalc.
https://cocalc.com/

LATEX on Windows is typically consists of installing the collection of
classfiles defined in a MikTEXdistribution. Specifically MikTEXis a set
of macros for TEX. It includes LATEX and other packages needed for
document typesetting. This collection can be downloaded from:

www.miktex.org

TEXLive is also an easy way to get up and running with the TEX
document production system.

www.tug.org/texlive/

1.1.1 Front-End Editors

As LATEX is a typsetting language the editor used to create documents is
not important, and documents can be written on any editor that allows
for organizing text. Some editors have been created with editing LATEX
documents in mind. A list of LATEX editors is available at:

beebom.com/best-latex-editors/

A common editor used on multiple platforms is TexMaker.
www.xm1math.net/texmaker/index.html

A common Windows editor is WinEdt www.winedt.com
Mac users sometimes enjoy TexShop as their editor.
There are many other text editors for LATEX for example LyX. Some

are embedded in mathematical software, such as Mathematica, Matlab,
and scientific notebook.

https://www.overleaf.com
https://cocalc.com/
www.miktex.org
www.tug.org/texlive/
beebom.com/best-latex-editors/
www.xm1math.net/texmaker/index.html
www.winedt.com
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1.2 Typesetting a Document

All documents need the following header commands:

Example 1.1: Basic Document

\documentclass[12pt]{article}

\begin{document}

The text of your document.

\end{document}

To create sections and subsections use:

Example 1.2: Sections

Use commands \subsection{A subsection} Note subsection with-
out an asterisk. \subsection*{A subsection too} This will not
be in the table of contents.

In (1.2) we do some stuff. In (1.1) we do other stuff. Citing things
in the document we use the \cite{dut961} in the text [?] to get the
citation and add it to the bibliography.

The Package works as a markup language for the text you type. It has
two types of equation environment to use. The first is the in paragraph
math environment. To use this environment place dollar signs around
your desired mathematical expression.

Example 1.3: Inline Math

For example putting $\frac{stuff}{otherstuff}$ in a line of
text would produce: stuff

otherstuff in the line of text.

The second type of expression environment lets you place mathematics
expressions on separate lines. Use \[ mathematical expression \] to
do this.

Example 1.4: Separate Line of Math

The following line would produce the expression that follows.

\[ \int_0^1{\frac{1}{1+x^2}}dx = \frac{\pi}{4} \]
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∫ 1

0

1

1 + x2
dx =

π

4

Other key items: Things are what you think they should be! \sum pro-
duces

∑
. Typing \underline{ stuff } will produce the result: stuff.

The braces are used by LATEX as a form of unseen parentheses.

1.3 Inside the math environment:

1. Spacing in the math environment: Look at the term∫ 1

0

1

1 + x2
dx =

π

4

this looks much better written as:∫ 1

0

1

1 + x2
dx =

π

4

To achieve this we use \! which makes the space between items
in the math environment smaller, and \; which make the space
between items greater.

2. Typing text in an equation. Use the command \mbox{ text } to
place text such as ‘and’ in the expression x ≤ 2 and x ≥ 25.

1.4 Spacing

1. To move to various distances in a line use the \vskip1in command
or use the \hskip1.2in to leave a blank space of 1.2 inches. LATEX
recognizes the spacing commands in either inches or in points (pt).

2. To double space or one and a half space a document use the com-
mand \baselineskip24pt or whatever distance is desired.

3. To play with the margins use the command \oddsidemargin1in .
The top margin is \topmargin1in, and the bottom margin is ad-
justed using the term \textheight8in . Adjust the right hand
margin using \textwidth6in. Note: LATEX will recognize negative
spacing in these commands.

4. The command \\ will end a line and start a new one.

5. To start a new paragraph just simply skip a line in you text docu-
ment.
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6. LATEX will automatically indent the first line of a new paragraph.
To stop this use the command \noindent.

7. To get rid of pesky page numbers centered at the bottom of the
page use the command \thispagestyle{empty} .

1.5 Changing Text style

1. The command \tt will produce type writer style text.

2. The command \bf will produce the bold face text., and \em will
produce nice typing .

3. The size of text can be changed using the slash and the following
words: tiny, scriptsize, footnotesize, small, normalsize, large, Large,
LARGE, huge, and HUGE. Note: These changes in the text size
stay until you change them back.

1.6 Some Basic Environments

1. The center environment: Use the command \begin{center} then
type your information, and when your done just close the environ-
ment using the command \end{center} . Note: All environments
must be closed otherwise LATEX will give an error; however, it is
nice and shows where it thinks the Error occurred.

2. The Quote Environment: Works the same as the center environ-
ment. Place your quote between \begin{quote} and \end{quote}.

3. The Enumerate Environment: This works as a way to number
items, such as this list. Begin the environment using \begin{enumerate}
, then to enter new items in the list use \item . Note: Nested enu-
merates may be used.

4. The array environment: This will allow you to set equations equal,
and to type matrices, and tables. It is best explained by just looking
at an example and comparing with the output. 4x2 3y3 = 0

x1

... = ·
fn+3(x) fn+2 = . . .


The LATEX markup to get this expression is:
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\[ \left( \begin{array}{c|rc|l} \\

4x^2 & 3y^3 & = & 0 \\

x_1 & \vdots & = & \cdot \\

f_{n+3}(x) & f_{n+2} & = & \ldots \\

\end{array} \right] \]

Note: that the & separates the boxes, within the array. Also the r,
c, and l give the alignment of each column. The \\ term is used
to end the row.

A second Example:[
2 4
3 1

]
+

[
1 0
0 1

]
=

[
3 4
3 2

]
To get the above expression just type the following:

\[ \left[ \begin{array}{cc}

2 & 4 \\

3 & 1 \\ \end{array}\right]

+ \left[ \begin{array}{cc}

1 & 0 \\

0 & 1 \\ \end{array}\right]

= \left[ \begin{array}{cc}

3 & 4 \\

3 & 2 \\ \end{array} \right] \]

1.7 Figures

LATEX allows for .eps files to be imported nicely into a figure environment.
One only needs to export the figure as file.eps form its source. The picture
below can be achieved using the following text:

\begin{figure}[htp]

\centering

\subfigure[logo 1]{

\label{p-s-plot_sand}

\includegraphics[angle=0, height=1.0in]{iuplogo}}

\hspace{.75in}

\subfigure[logo 2]{

\label{p-s-plot_all}

\includegraphics[angle=90, height=1.0in]{iuplogo}}

\caption{Two logos! \label{logoB}}

\end{figure}
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(a) logo 1 (b) logo
2

Figure 1.1: Two logos!

Note: you must have :
\usepackage[dvips]{graphics}

\usepackage[dvips]{graphicx}

in the preamble of your document for the above code to work.

1.8 Including TEX from Other files

There are two ways to do this nicely:

1. Use the \include{filename} command. This option will include
all the TEX in the given file and also inserts a page break before
the markup is included.

2. Use the \input{filename} command. This brings your markup in
without any altered spacing commands.

Note in both cases you need not include any of the preamble.

\begin{document} ...

\end{document}

1.9 Cross Referencing Expressions or Sec-
tions

In order to reference an equation or expression you can use a labeling
command. The following

\begin{equation}

\nabla {\bf u} \cdot {\bf g} = {\bf 0}.

\label{refeqq}

\end{equation}
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will produce
∇u · g = 0. (1.1)

Note that the expression has a reference in it. You can then reference
this later in the text by using a reference to the label with \ref{refeqq}

as in expression (1.1) some stuff is done. Using an asterisk will suppress
the equation numbering.

\begin{equation*}

\Delta {\bf u} \cdot {\bf g} = {\bf 0}

\end{equation*}

Note that
∆u · g = 0

the equation directly above has no label. A similar effect can be accom-
plished using the \nonumber command. The markup given by:

\begin{eqnarray}

y & = & \pi x + 2 \nonumber \\

& = & 7 \Pi \label{refeqb}

\end{eqnarray}

produces the typeset expression:

y = πx+ 2

= 7Π (1.2)

1.10 Slides and Presentations

The “beamer” package is quite handy for making your LATEX markup
documents into slides for talks and presentations. After ensuring that
the beamer class for LATEX is installed you can then typeset slides as
follows:

\documentclass{beamer}

\usepackage{beamerthemeshadow}

\begin{document}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}

\frametitle{\LaTeX Commands}

Generally speaking, there are three types of commands:

\begin{itemize}

\item Simple commands: start with a $\backslash$ followed directly

by the command\\

ex: $\backslash$newpage
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\pause

\item Environments: start with a $\backslash$begin$\{...\}$ and

end with $\backslash$end$\{...\}$\\

ex: $\backslash$begin$\{$equation$\}$\\

$\backslash$frac$\{$dy$\wedge$2$\}$$\{$d$\wedge$2x$\}$

+$\backslash$frac$\{$dy$\}$$\{$dx$\}$=x$\wedge$2+1\\

$\backslash$end$\{$equation$\}$

\begin{equation}

\frac{dy^2}{d^2x}+\frac{dy}{dx}=x^2+1

\end{equation}\pause

\item Commands that require additional arguments\\

ex: $\backslash$textbf$\{$ABC$\}\rightarrow$ \textbf{ABC}

\end{itemize}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\end{document}

The above given markup produces a slide that is shown in figure 1.2.
Note the following:

• The document class is defined to be beamer.

• You can easily change the theme of the slides by adjusting theme
used.

• Each slide in your presentation is defined using the “frame” com-
mand.

• Pauses or breaks can be included in the slide by using the “\pause”
command.

The reader is advised to do some searching on the beamer package
and how it can be used.
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Figure 1.2: Example of a beamer slide.



Chapter 2

Calculus Review

This chapter will serve as a brief review of the essential concepts encoun-
tered in a calculus sequence.

2.1 Sequences

Assuming that the reader is familiar with functions and basic function
notation our review will start with sequences and the set of real number
R and a discussion of limits.

A sequence in R is usually thought of as a list of numbers:

x1, x2, x3, . . . , xn, xn+1, . . .

where xi ∈ R for all i in N.

Example 2.1: Basice Sequence

(xn)n∈N =

(
1

n

)
n∈N

=

(
1,

1

2
,

1

3
, . . . ,

1

n
,

1

n+ 1
, . . .

)
It is often useful to view a sequence as a function that maps N to the

real numbers R. That is:

Definition 2.1: Sequence

A sequence is a function f : N→ R.

In the above Example 2.1 the list of numbers is then the range of the
sequence f : N→ R defined by f(n) = 1

n , n ∈ N. Here we see that

f(1) = x1 = 1, f(2) = x2 =
1

2
, . . .

11



12 CHAPTER 2. CALCULUS REVIEW

Definition 2.2: Limit

A real number x ∈ R is the limit of the sequence (xn)n∈N ⊂ R if for
every ε > 0,∃ N ∈ N such that |xn − x| < ε, ∀n ≥ N.

Using the Definition 2.2 we say that (xn) converges to x and we can
write:

lim
n→∞

(xn) = x or xn → x, n→∞.

To expand on the definition of a limit consider a fixed value of ε > 0
where ε is set arbitrarily as small as you desire, then visually we see the
convergent sequence as:

In Example 2.1 xn = 1
n → 0 as n → ∞. Indeed, fix any ε > 0 as small

as you like. Let N ∈ N be defined such that N > 1
ε so that 1

N < ε. If
n ≥ N then 1

n ≤
1
N < ε. Thus

1

n
=

∣∣∣∣ 1n
∣∣∣∣ =

∣∣∣∣ 1n − 0

∣∣∣∣ =

∣∣∣∣xn − x∣∣∣∣ < ε

Since ε > 0 was arbitrary,

lim
n→∞

(
1

n

)
= 0 or

(
1

n
→ 0

)
.

2.2 Limits

We continue the review by considering the limits of functions. Recall that
a limit is unique provided that it exists. Let f : D → R, D ⊆ R, c ∈ R
such that

[(c− δ, c+ δ)/{c}] ∩D 6= ∀δ > 0.

Lets examine the definition of a limit of a function at some point c.

Definition 2.3: Limit of a function at a point.

L ∈ R is the limit of f at c if ∀ε > 0∃δ > 0 such that |f(x)−L| < ε
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whenever |x− c| < δ. We write

lim
x→c

f(x) = L or f(x)→ L as x→ c.

Note that f(c) 6= L is possible. It is also not required that c ∈ D, it is
only required that c is a limit point of D. Figure 2.1 depicts the limit of
a function at a point. Note that

lim
x→c

f(x) = L, however f(x) 6= L.

Figure 2.1: The value of ε is fixed first, then an interval in the domain
can be found based on δ that will satisfy the predetermined value of ε.

Definition 2.4: Continuity of a function

Let f : D → R and c ∈ D. Then f is continuous at c if

lim
x→c

f(x) = f(c).

When considering the continuity of a function at a point we are looking
to see that f(x) can be made arbitrarily close to f(c) if x is close enough
to c. Continuity implies that small changes in x produce small changes
in f(x). The reader should think of some illustrating examples where the
function f is, and is not continuous at c. How would these situations be
depicted graphically?
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2.3 Derivatives

Let f : D → R, and a ∈ D.

Definition 2.5: Derivative of a function at a point.

The derivative of a function f at a, denoted f ′(a) is

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
or f ′(a) = limx→ a

f(x)− f(a)

x− a
.

provided the limit exists.

The following represents a list of applications of derivatives that the
reader should be familiar with.

• Finding slopes of tangent lines.

• Instantaneous rate of change.

• Graphing

• Optimization

Also recall that there is a set of derivative rules and techniques including:

• Power Rule

• Product Rule

• Quotient Rule

• Chain Rule

Recall that differentiability of a function at x0 implies continuity at x0;
however, continuity of a function at x0 does not imply the differentiability
of the function at x0.

A key concept from calculus is the mean value theorem.

Theorem 2.1: The Mean Value Theorem

Suppose f is continuous on [a, b], and f is also differentiable on
(a, b). Then ∃c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
or f(b)− f(a) = f ′(c)(b− a).
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By defining Tc(x) as the tangent line to f(x) at c with f ′(c) = T , and L
to be the secant line between points (a, f(a)) and (b, f(b)) such that the
slope between these points is given by

L =
f(b)− f(a)

b− a
,

then the following figure illustrates the mean value theorem.

The mean value theorem assures that there exists c ∈ (a, b) such that the
slope of Tc(x) = L.

2.4 Antidifferentiation

Definition 2.6: Antidifferentiation

F (x) is called an antiderivative of f(x) on the interval I if F ′(x) =
f(x)∀x ∈ I.

Note that since F (x) is differentiable, it is continuous. Hence all an-
tiderivatives are continuous. Also

F ′(x) = f(x) =⇒ d

dx
(F (x) + c) = f(x)∀ c ∈ R.

Example 2.2: sin(x)

For f(x) = cos(x). Then F (x) = sin(x), sin(x) + 1, etc.
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2.5 Integration

This section can not cover all technical aspects of integration ; however,
it is good to be reminded that integration comes from a limit.

Consider f : [a, b]→ R, and partition [a, b] into n ∈ N parts such that:

With
∆xi := xi − xi−1, ∀i ∈ {1, 2, . . . , n},∆x = max

i
∆xi.

then we explore integrable functions.

Definition 2.7: Integrable

A function f is integrable on [a, b] if

I = lim
∆x→0

n∑
i=1

f(x∗i )∆xi exists.

In this case we write:

I =

∫ b

t=a

f(t) dt = definite integral.

What types of functions will the value of I exist? Think about continuous
functions, or bounded functions when discontinuities are present.

Theorem 2.2: Fundamental Theorem of Calculsu

Suppose f is continuous on [a, b], Define

F (x) =

∫ x

t=a

f(t) dt∀x ∈ [a, b] (2.1)

then

F ′(x) =
d

dx

∫ x

t=a

f(t) dt = f(x) on [a, b].

Here F (x) is an antiderivative of f(x). Note that (2.1) has F (a) = 0
since ∆xi = 0 ∀ i. Note that F (x) =

∫ x
a
f(t) dt + k, for arbitrary

k ∈ R, must also be an antiderivative such that F (a) = k. Hence,
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if

F ′(x) = f(x) on [a, b] then

∫ b

x=a

f(x) dx = F (b)− F (a).

2.6 Integration Techniques

The following are basic integration techniques that readers should be
familiar with:

• Substitution: Used to ‘reverse’ chain rule .

1.
d

dx
(f(g(x))) = f ′(g(x))g′(x)

2.

∫
f ′(g(x))g′(x)dx make use of u = g(x), du = g′(x)dx∫

f ′(u)du = f(u) + C = f(g(x)) + C.

• Integration By Parts: This is related to the product rule.

1.
d

dx
(f(x)g(x)) = f ′(x)g(x) + g(x)g′(x)

f(x)g′(x) =
d

dx
(f(x)g(x))− f ′(x)g(x)

2.

∫
f(x)g′(x)dx = f(x)g(x)−

∫
f ′(x)g(x)dx

Symbolically: u = f(x) → du = f ′(x)dx and dv = g′(x)dx →
v = g(x) ∫

udv = uv −
∫
vdu.

• Trigonometric Integrals: Know that trig identities are used to
find

∫
sinm(x) cosn(x) dx and

∫
tanm(x) secn(x) dx.

• Trig Substitution: When and integral contains an expression of
the form√

a2 − x2 then x = arcsin(θ) and 1− sin2(θ) = cos2(θ).√
a2 + x2 then x = arctan(θ) and 1 + tan2(θ) = sec2(θ).√

x2 − a2 then x = asec(θ)

Additionally know that there are techniques that are used for dealing
with partial fractions, and rationalizing substitutions.
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2.7 Infinite Series

Let an ∈ R ∀ n ∈ N. The formal definition of a series is an expression of
the form

a1 + a2 + · · ·+ an + an+1 + · · ·

with infinitely many additions. To attach meaning to a series we consider
their convergence.

Definition 2.8: Series Convergence

Suppose (an) ⊂ R is a sequence and define

sn := a1 + a2 + · · ·+ an ∈ R ∀ n ∈ N.

Note: s1 = a1 and sn+1 = sn + an+1 ∀ n ≥ 1.
If (sn) converges (say to S ∈ R) then we say the series converges
and set

∞∑
n=1

an = lim
n→∞

(sn) = S.

If a series does not converge we say it diverges.

Theorem 2.3: Convergent Series

∞∑
n=1

an convergent −→ lim
n→∞

an = 0

Note the converse is not true

Example 2.3: 1
n goes to zero too slow.

lim
n→∞

1

n
= 0 but

∞∑
n=1

1

n
=∞ /∈ R

Theorem 2.4: Absolute Convergence

∞∑
n=1

|an| convertent =⇒
∞∑
n=1

an converges (an ∈ R ∀ n ∈ N)
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This comes from properties of the real numbers.

Note that the converse of this theorem is not true. If

∞∑
n=1

an converges, and

∞∑
n=1

|an|

does not converge,
∑∞
n=1 an is conditionally convergent. If

∑∞
n=1 an is

conditionally convergent then the terms can be rearranged and made to
converge to any real number or diverge to either extreme or nothing.
Consider the following example:

Example 2.4: Convergence

∞∑
n=1

(−1)n−1

n
= ln(2)

however,
∞∑
n=1

1

n
diverges.

2.8 Convergence Tests

1. Integral test: This gives us information about p-series. The series

∞∑
n=1

1

np

converges if p > 1 and diverges if p ≤ 1.

Example 2.5: Geometric Series

∞∑
n=1

arn−1 =
a

1− r
if |r| < 1 and diverges if |r| ≥ 1.

2. Comparison Test: Given ab and bn > 0 ∀ n ∈ N :

• an ≤ bn ∀n ∈ N;
∑
bn converges implies

∑
an converges.

• an ≥ bn ∀n ∈ N;
∑
bn diverges implies

∑
an diverges.

3. Limit Comparison
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4. Alternating Series Here we consider:

∞∑
n=1

(−1)n−1bn converges

provided:

bn > 0 such that bn+1 ≤ bn ∀ n ∈ N and lim
n→∞

bn = 0.

5. Ratio Test:

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ ;
when

L < 1 =⇒ absoloute convergence =⇒ convergence.

when
L > 1 or L =∞ divergence.

6. Root Test: Consider

L = lim
n→∞

|an|
1
n

and use the results state above.

2.9 Power Series

Define

f(x) =

∞∑
n=0

cn(x− a)n, a ∈ R, cn ∈ R ∀ n ∈ N, and x a variable.

Theorem 2.5: Convergence of Power Series

There are 3 possibilities for the convergence of f(x)

1. Domain of f , dom(f) = {a} converges only at x = a.

2. dom(f) = R converges ∀ x ∈ R.

3. The series converges for x ∈ (a−R, a+R) and diverges if |x−
a| > R. The domain may or may not converge conditionally
at x = a±R.
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Power series converge uniformly in their interval of convergence and hence
are

1. Continuous

2. Differentiable (term-by-term)

3. Integrable (term-by-term).

If f is defined in some interval by a power series, f is called analytic.

2.10 Exercises

Work the following exercises:

1. Show that limn→∞

(
n
n+1

)
= 1.

2. For the function

f(x) =

{
x2 − 3 x ≤ 2

x− 1 x > 2,

show that f is continuous at x = 2. Hint: consider 1-sided limits
and recall that limx→c p(x) = p(c), for p a polynomial, and c ∈ R.

3. Explain why f is not continuous at any point in R for the function

f(x) =

{
1 x ∈ Q
0 x ∈ R/Q.

4. For f(x) = x2 − 8x+ 9 find f ′(x) using the limit definition.

5. Given k(x) =
√

4− x2e7x. Find k′(x) and equation of a tangent
line at x = 0. Write a sentence interpreting the meaning of k′(0).

6. Given f(x) = |x|. Show f is continuous at x = 0, but not differen-
tiable at x = 0.

7. Use the mean value theorem to explain why x5 + 10x + 3 = 0 has
exactly one solution.

8. Given,

f(x) =

{
0 x ≤ 0

1 x > 0.

explain why f(x) has no antiderivative on any interval containing 0.

9. Evaluate:
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(a)

∫ e4

x=e

1

x
√

ln(x)
dx

(b)

∫
ex sin(x) dx

(c) Given the power series

f(x) =

∞∑
n=0

(x− 3)n

n
.

Find the domain of f , that is values of x where the series
converges. Consider the end points of the interval you find.



Chapter 3

Ordinary Differential
Equations

Mathematics is a universal language and is progressed because people
attempt to provide answers to questions human beings have about the
world. This chapter gives some historical context and a brief review of
some concepts from ordinary differential equations. The study of differ-
ential equations is necessary to advance our study and assist in answering
questions.

3.1 History and Background

Calculus and ordinary differential equations are based in the work of
prominent mathematicians, physicists, philosophers and scientists includ-
ing:

• Isaac Newton: Physicist, Philosopher

• Gottfried Wilhelm Leibniz: Philosopher, Scientist

• Leonhard Euler: Physicist, Astronomer

According to some mathematics historians, the study of differential
equations began in 1675 when Gottfried Leibniz wrote∫

xdx =
1

2
x2.

Isaac Newton had the essence of the method of fluxions (equivalent
to Leibniz’s differential and integral calculus) by 1666. His method of

23
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integration by infinite series became known to other mathematicians pri-
vately in 1668. He also delivered them in Cambridge between 1673 to
1683. They were finally published in 1707.

The devil is in the detail, but don’t forget the big picture when you
are working on the detail.

3.2 Basic Concepts and Definitions

What is derivative?

• A differential equation involving only ordinary derivatives with re-
spect to a single independent variable is called an ordinary differ-
ential equation, ODE. A differential equation involving partial
derivatives with respect to more than one independent variable is
a partial differential equation, PDE.

• The order of a differential equation is the order of the highest-order
derivatives present in the equation.

Definition 3.1: differential Equation

A differential equation is linear if it has the format

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = F (x),

where an(x), an−1(x), . . . , a0(x), and F (x) depend only on the in-
dependent variable x.

Example 3.1: ODE or PDE

Determine each of the following equations is ODE or PDE, linear
or nonlinear, and the order.

1. d2y
dx2 + y3 = x2

Note differentiation is with respect to only x.

2. d3y
dx3 + cos(x) d

2y
dx2 − dy

dx + y = x2+1
x−2

Again note differentiation is with respect to only x.

3. ∂4u
∂y4 −

∂3u
∂x3 + u2 = x3 − y3.

Here their is differentiation with respect to both x and y.
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Definition 3.2: nth-order ODE

A general form for an nth-order equation with x independent, y
dependent can be expressed as

F

(
x, y,

dy

dx
, . . . ,

dny

dxn

)
= 0, (3.1)

where F is a function that depends on x, y and the derivatives of y
up to order n. It is assumed that the equation holds for all x in an
open interval I(a < x < b, where a or b could be infinite). In many
cases (3.1) can be written as

dny

dxn
= f

(
x, y,

dy

dx
, . . . ,

dn−1y

dxn−1

)
, (3.2)

which is often preferable to (3.1).

Definition 3.3: Initial Value Problem

A Initial Valued Problem is a differential equation along with
appropriate number of initial conditions. That is, the equation (3.1)
on an interval I satisfies at x0 the n initial conditions

y(x0) = y0,
dy

dx
(x0) = y1,

...
dn−1y

dxn−1
(x0) = yn−1,

where x0 ∈ I and y0, y1, . . . , yn−1 are given constants.

Any ordinary differential equation can be written as a first-order ordinary
differential equation.

Example 3.2: ODE Example

Given y′′ − y′ − 2y = 0. Rewrite it as a 1st order ODE. Show that
φ(x) = c1e

−x + c2e
2x is a solution to the given ODE for any choice

of the constants c1 and c2. Finally determine c1 and c2 so that the
initial conditions y(0) = 2 and y′(0) = −1.
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Without (initial/boundary) conditions, an ODE is likely to have inifite
solutions. WHY??

Definition 3.4: Direction Field

A plot of short line segments drawn at various points in the xy-
plane showing the slop of the solution curve is called a direction
field for the differential equation.

Example 3.3: Direction Field

Given the direction field of y′ = x2−y. Sketch the solution for each
of the following initial conditions.
1. y(−.5) = 1 2. y(−1) = 0 3. y(0) = 1

Matlab is sometimes useful to assist in plotting the direction field.

Example 3.4: Matlab Plotting

[x,y] = meshgrid(-1:.2:1,-1:.2:1);

dx=ones(size(x));

dy=x.^2-y;

quiver(x,y,dx,dy)

Use the above matlab code to assist yourself in plotting the direction
field for each of the following differential equations.

1. y′ = 1
x−.5x2 over [0, 12]× [0, 12] with the step size of .5.
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2. y′ = (y2−y−2)(1−y)2 over [0, 5]×[−2, 3] with the appropriate
step size.

What does the .^ command do?

3.3 First Order Differential Equations

Lets consider solving some differential equations.

Definition 3.5: Separable

A separable differential equation is any DE that can be written in
the form of

dy

dx
= g(x)p(y). (3.3)

To solve a separable differential equation, we can rewrite (3.3) as

h(y)dy = g(x)dx, where h(y) =
1

p(y)

. Then integrate both sides∫
h(y)dy =

∫
g(x)dx⇒ H(y) = G(x) + C,

where we merged the two constants of integration into a single symbol
C. The last equation gives an implicit solution to (3.3).

Example 3.5: Separable Equation

Given dy
dx = x−5

y2 with y(0) = 12.

1. Plot a direction field for the given DE and sketch the solution
of the IVP.

2. Find the solution to the IVP algebraically.

3. Plot the solution from part 2 on the direction field.

3.4 Linear Equations

Definition 3.6: Linear 1st Order Equation

A linear 1st order equation is an equation that can be expressed



28 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

in the form

a1(x)
dy

dx
+ a0(x)y = b(x), (3.4)

where a1(x), a0(x), and b(x) depend only on the independent vari-
able x, not on y. The standard form of a linear 1st order DE
is

dy

dx
+ P (x)y = Q(x). (3.5)

Some questions for thought:

1. Is it possible that (3.4) is separable?

2. What is the advantage of the standard form (3.5)?

Solving linear equations like (3.4), the idea is if a0(x) = a′1(x), then (3.4)
becomes

d

dx
[a1(x)y] = b(x)⇒ a1(x)y =

∫
b(x)dx⇒ y =

1

a1(x)

∫
b(x)dx.

However, it is very unlikely that a0(x) = a′1(x). If considering (3.5) and
multiplying µ(x) to (3.5), i.e.,

µ(x)
dy

dx
+ µ(x)P (x)y = µ(x)Q(x).

If we choose µ(x) such that µ′(x) = µ(x)P (x). Then the left hand side
become d

dx [µ(x)y] .

1. Define µ(x) = e
∫
P (x)dx.

2. Integrate d
dx [µ(x)y] = µ(x)Q(x).

3. Solve for y by dividing by µ(x).

3.5 Exact Equations

Definition 3.7: Exact Equations

The differential from M(x, y)dx+N(x, y)dy is said to be exact in
a rectangle R if there is a function F (x, y) such that

∂F

∂x
(x, y) = M(x, y) and

∂F

∂y
(x, y) = N(x, y)

for all (x, y) in R. That is, the total differential of F (x, y) satisfies
dF (x, y) = M(x, y)dx + N(x, y)dy. If M(x, y)dx + N(x, y)dy is an
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exact differential form, then the equation

M(x, y)dx+N(x, y)dy = 0 (3.6)

is called an exact equation. Its solutions are given by the level
curves F (x, y) = c, for an arbitrary constant c.

To solve an exact equation:

1. Verify that it is an exact equation: ∂F
∂x = M and ∂F

∂y = N.

2. Define F (x, y) =
∫
M(x, y)dx+ g(y)

3. Take partial derivative w.r.t y of both sides of Step 2 and substitute
N for ∂F

∂y . Then solve for g′(y).

4. Integrate g′(y) to obtain g(y) and substitute g(y) into Step 2.

Example 3.6: Exact Equation

Given dy
dx = − 2xy2+1

2x2y .

1. Solve the above differential equation.

2. Plot level curves of the implicit solution.

3.6 Special Integrating Factors

If (3.6) is not exact, is it possible to find an equivalent equation which is
exact?

Consider the techniques from the section on linear equations, is it
possible to choose µ(x, y) such that

µ(x, y)M(x, y)dx+ µ(x, y)N(x, y)dx = 0 is exact?

If µ(x, y) exists, we call µ(x, y) an integrating factor of (3.6).

3.7 Substitutions and Transformations

Another common technique used when solving differential equations is to
consider substitutions and transformations. Here the procedure is:

1. Identify the type of equation and determine the appropriate sub-
stitution or transformation.
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2. Rewrite the original equation in terms of new variables.

3. Solve the transformed equation.

4. Express the solution in terms of the original variables.

Example 3.7: Transformation

Solve dy
dx = y − x− 1 + (x− y + 2)−1.

Transformations are very common techniques in dealing with “unsolv-
able” problems. The main idea is moving the problem to a different
“space” that makes the problem easier to solve and then move the solu-
tion back to the original space.

3.8 Interval of Validity

Does the solution exist for an initial value problem? And if so, is the
solution unique for a given IVP?

Theorem 3.1: Unique Solution on Interval for IVP

Given the initial value problem (IVP)

dy

dx
= f(x, y), y(x0) = y0,

assume that f and ∂f
∂y are continuous function in rectangle R =

{(x, y) : a < x < b, c < y < d} that contains the point (x0, y0).
Then the IVP has a unique solution φ(x) in some interval x0 − δ <
x < x0 + δ, where δ > 0.

Example 3.8: Interval of Validity

For the initial value problem

dy

dx
= 3y2/3, y(2) = 0.

1. Does Theorem 3.1 imply the existence of a unique solution?

2. Find two solutions for the given IVP.

3. Consider the initial condition, y(0) = 10−7, does it have a
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unique solution in the neighborhood of x = 0?

3.9 Euler’s Method

Euler’s method (or the tangent-line method): constructs approximate
solutions to an IVP for a 1st order ODE of the form:

y′ = f(x, y), y(x0) = y0. (3.7)

If (3.7) has a unique solution φ(x) in the neighborhood of x0, i.e. φ′(x) =
f(x, φ(x)), φ(x0) = y0. Let xn = x0 + nh, n = 0, 1, 2, . . . , where h > 0
is the step size. How to approximate φ(x1), φ(x2), . . . , if the explicit
solution cannot be found?

Theorem 3.2: Taylor’s Theorem

If φ : [a, b]→ R is n+1-times continuously differentiable, then there
exists c ∈ (a, b) such that

φ(b) = φ(a)+φ′(a)(b−a)+· · ·+φ(n)(a)

n!
(b−a)n+

φ(n+1)(c)

(n+ 1)!
(b−a)n+1.

Assume that φ(x) is twice continuously differentiable. According to
Theorem 3.2,

φ(x) ≈ φ(x0) + φ′(x0)(x− x0), where x ∈ neiborhood of x0.

If h is small enough, we can derive the followings:

φ(x1) ≈ φ(x0) + φ′(x0)(x1 − x0) = y0 + hf(x0, y0)
φ(x2) ≈ φ(x1) + φ′(x1)(x2 − x1) = φ(x1) + hf(x1, φ(x1))
φ(x3) ≈ φ(x2) + φ′(x2)(x3 − x2) = φ(x2) + hf(x2, φ(x2))

Denote y0 + hf(x0, y0) as y1, which is an approximation of φ(x1). Thus,

φ(x2) ≈ φ(x1) + hf(x1, φ(x1)) ≈ y1 + hf(x1, y1).

Similarly, we define yk+1 = yk + hf(xk, yk+1).
Then we can state Euler Method:

xn+1 = xn + h
yn+1 = yn + hf(xn, yn), n = 0, 1, 2, . . . .
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Example 3.9: Euler’s Method

Consider the IVP y′ + 2y = 2 − e−4x, y(0) = 1. We know the solu-
tion is y(x) = 1 + .5e−4x − .5e−2x. Compare the results from Euler
Method with the solution using different h for the interval of [0, 5].

A matlab code that can be used to find the solution to the given
IVP is given by:

3.10 Second order DE with constant coeffi-
cients
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Definition 3.8: Second Order Constant Coefficient DE

A second order constant coefficient differential equation is in the
form of

ay′′ + by′ + cy = f(t), a 6= 0 (3.8)

with the special case where the function f(t) is 0:

ay′′ + by′ + cy = 0, (3.9)

is the homogeneous form of (3.8).

Can the reader convert (3.8) and (3.9) to 1st order ODE?
From (3.9), we observe that y′′ is a linear combination of y′ and y.

What elementary functions have this property?

y(t) = ert.

If we substitute y = ert into (3.9), we obtain

ar2ert + brert + cert = 0⇒ ert(ar2 + br + c) = 0.

Since ert 6= 0,∀t, the above equation is equivalent to

ar2 + br + c = 0. (3.10)

Here (3.10) is known as the auxiliary equation or characteristic equation .
Think about what happens to the equivalent system of 1st order ODEs?

Theorem 3.3: Principle of Superposition

If y1(t) and y2(t) are two solutions to a linear, homogeneous differ-
ential equation, then so is y(t) = c1y1(t) + c2y2(t).

Example 3.10

olve the initial value problem

y′′ + 3y′ − 1y = 0; y(0) = 0, y′(0) = −1;

3.11 Method of Undetermined Coefficients

To find a particular solution to the differential equation

ay′′ + by′ + cy = Pm(t)eαt cosβt+Qn(t)eαt sinβt,
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where Pm(t) and Qn(t) are polynomials of degree m and n, respectively.
Use the form

yp(t) = ts(akt
k + · · ·+ a1t+ a0)eαt cosβt

+ts(bkt
k + · · ·+ b1t+ b0)eαt sinβt,

where k is the larger of m and n. If α+ iβ is not a root of the associated
characteristics equation, take s = 0; if α + iβ is a root of the associated
characteristics equation, take s = 1.

Example 3.11: Undetermined Coefficients

Use the method of undetermined coefficients to solve:

1. Solve y′′ − y = 2− t2, y(0) = 1, y′(0) = 0.

2. Solve 36y′′ − 12y′ + 37y = 0.

3.12 Eigenvalues and Eigenvectors

To solve a system of 1st order ODEs, eigenvalues and eigenvectors are
used frequently.

Definition 3.9: Eigenvalue and Eigenvector

Given A is a n× n matrix. λ is an eigenvalue of A if there exists a
non zero vector x such that

Ax = λx.

x is called a eigenvector associated with the eigenvalue λ.

Example 3.12: Eigenvalue and Eigenvector

Find eigenvalues and associated eigenvectors of A =

[
−1 8
2 −1

]
.

3.13 Exercises

1. Consider y′ = (y2 − y − 2)(1 − y)2 and use the information from
Example (3.4) to describe the behavior of solutions with different
initial conditions. Note that matlab quiver may be helpful when
plotting the direction field.
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2. According to Newton’s law of cooling, if an object at temperature T
is immersed in a medium having the constant temperature M , the
rate of change of T is proportional to the difference of temperature
M − T.

(a) Write an equation that describes the Newton’s law of cooling?

(b) Solve the equation.

(c) A thermometer reading 100oF is placed in a medium having a
constant temperature of 70oF. After 6 minutes, the thermome-
ter reads 80oF. What is the reading after 20 minutes?

3. A rock contains two radioactive isotopes, RA1 and RA2, the belong
to the same radioactive series; that is RA1 decays into RA2, which
then decays into stable atoms. Assume that the rate at which RA1

decays into RA2 is 50e−10tkg/sec. Because the rate of decay of RA2

is proportional to the mass y(t) of RA2 present.

(a) Write an differential equation describing the rate of change in
RA2 using the notations: the mass y(t) of RA2 and the decay
constant of k > 0.

(b) If k = 2/sec, and the initial mass of 40kg, find the mass y(t)
of RA2 for t ≥ 0.

(c) Approximate how long it takes for RA2 to be less than 0.1kg.

4. Consider the IVP y′−y = −0.5e0.5x sin(5x)+5e0.5x cos(5x), y(0) =
0. Its solution is y(x) = e0.5x sin(5x). Use Euler’s method to find
the approximated solutions with h = 0.1, 0.05, 0.001, 0.0001 and
compare with the analytic solution.

5. Convert the given IVP to a system of 1st order ODEs and solve the
system.

y′′ + 3y′ − 1y = 0; y(0) = 0, y′(0) = −1;

6. Use the method of undetermined coefficients to solve:

(a) Solve 36y′′ − 12y′ + 37y = 3et/6 cos t.

(b) Solve 36y′′ − 12y′ + 37y = 5e−2t sin 2t.
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Chapter 4

Linear Algebra

A brief review of concepts from linear algebra.

4.1 Row Reduction and Solving Systems of
Equations

The three elementary row operations are:

Ri↔ Rj Swap Row i with Row j.
mRi Replace Row i with m(Row i), where m 6= 0.
mRi+Rj Replace Row j by the sum of itself and m(Row i).

We use elementary row operations to find an equivalent matrix in
reduced row echelon form, RREF, (or even just row echelon form , REF)
to solve systems of equations.

Example 4.1: Row Reduction

Solve the following system using elementary row operations:

x1 + 3x2 − 2x3 + 5x4 = 4
2x1 + 8x2 − x3 + 9x4 = 9
3x1 + 5x2 − 12x3 + 17x4 = 7

Solution: Convert to an augmented matrix , and then use elemen-
tary row operations to find an equivalent matrix in either REF or

37



38 CHAPTER 4. LINEAR ALGEBRA

RREF.

 1 3 −2 5 4
2 8 −1 9 9
3 5 −12 17 7

 -2R1+R2

-3R1+R3
−→

 1 3 −2 5 4
0 2 3 −1 1
0 −4 −6 2 −5


0.5R2−→

 1 3 −2 5 4
0 1 1.5 −0.5 0.5
0 −4 −6 2 −5


-3R2+R1

4R2+R3
−→

 1 0 −6.5 6.5 2.5
0 1 1.5 −0.5 0.5
0 0 0 0 −3


This matrix is in REF, but we can still read off the solution. Since
the last row of the matrix is equivalent to the equation 0 = −3, the
system has no solution (i.e. is inconsistent).

Example 4.2: Elementary Row Operations

Solve the following system using elementary row operations:

x + y − z = 0
2x − 3y + z = 0
x − 4y + 2z = 0

Solution: Convert to an augmented matrix, and then use elementary
row operations to find an equivalent matrix in either REF or RREF.

 1 1 −1 0
2 −3 1 0
1 −4 2 0

 -2R1+R2

-R1+R3
−→

 1 1 −1 0
0 −5 3 0
0 −5 3 0


−R2+R3−→

 1 1 −1 0
0 −5 3 0
0 0 0 0

 −0.2R2−→

 1 1 −1 0
0 1 −0.6 0
0 0 0 0


−R2+R1−→

 1 0 −0.4 0
0 1 −0.6 0
0 0 0 0
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This final matrix, which is in RREF, translates to the system:

x = 0.4z
y = 0.6z
z = z

So, z is a free variable, and the solution set is

{(0.4z, 0.6z, z) | z ∈ R}.

4.2 Linear independence

A set of vectors {~v1, ~v2, . . . , ~vp} in Rn is said to be linearly independent
if the vector equation

x1 ~v1 + x2 ~v2 + · · ·+ xp ~vp = ~0

has only the trivial solution. The set is called linearly dependent other-
wise.

Example 4.3: Linear Independent

Determine if the following set is linear independent or linearly de-
pendent in R3:

 2
4
1

 ,
 1

2
0

 ,
 −3

0
1

 ,
 0
−1

1

 .

Solution: We need to see if the vector equation

x1

 2
4
1

+ x2

 1
2
0

+ x3

 −3
0
1

+ x4

 0
−1

1

 =

 0
0
0


has a nontrivial solution or if it only has the trivial solution. Form-
ing the associated augmented matrix and row reducing, we obtain: 2 1 −3 0 0

4 2 0 −1 0
1 0 1 1 0

 RREF−→

 1 0 0 7/6 0
0 1 0 −17/6 0
0 0 1 −1/6 0

 .
Since there are nontrivial solutions (notice the free variable), the
set of vectors is linearly dependent.

This example illustrates that in Rn if a set of vectors has more than n
vectors the set will necessarily be linearly dependent.
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Example 4.4: Linearly Independent

Determine if the following set is linear independent or linearly de-
pendent in R3: 

 1
−3

4

 ,
 2

0
1

 ,
 0

7
1

 .

Solution: Jumping right to the augmented matrix and row reducing,
we get:  1 2 0 0

−3 0 7 0
4 1 1 0

 RREF−→

 1 0 0 0
0 1 0 0
0 0 1 0

 .
Since there is only the trivial solution, the set of vectors is linearly
independent.

4.3 Special classes of matrices

The main diagonal of a matrix refers to the entries in positions (i, i).
From this we can define a diagonal matrix to be a matrix that has zeroes
in all positions (i, j) where i 6= j. We usually use the classification of
diagonal matrix for square matrices.

Example 4.5: Diagonal Matrices

Here are a couple of examples of diagonal matrices:

[
−1 0

0 8

]
and

 3 0 0
0 −4 0
0 0 7

 .

Definition 4.1: Identity Matrices

The identity matrices are comprised of the n × n matrices whose
(i, i)-entries are 1 and whose other entries are 0.

Note that identity matrices are just a special class of diagonal matrices
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Example 4.6: Identity Matrices

Here are some of the identity matrices:

I1 = [1] , I2 =

[
1 0
0 1

]
, I3 =

 1 0 0
0 1 0
0 0 1

 , . . .

An upper triangular matrix is a matrix that has entries of zero below the
main diagonal.

Example 4.7: Upper Triangular

Here are two examples of upper triangular matrices:

 1 −2 0
0 2 9
0 0 −3

 and


1 0 4 −1
0 −2 7 0
0 0 2 1
0 0 0 8

 .
Similarly, a lower triangular matrix is a matrix that has entries of zero
above the main diagonal.

Example 4.8: Lower Triangular

Here are two examples of lower triangular matrices:

 2 0 0
−1 0 0

8 3 4

 and


−5 0 0 0

2 1 0 0
0 3 −4 0
2 0 −1 4

 .

4.4 Matrix operations

Consider the following matrices:

A =

 2 3
1 0
4 −1

 , B =

 5 0
0 −2
3 1

 , C =

[
4 −2 0
1 0 −1

]
, D =

[
2 0
1 1

]

A scalar multiple of a matrix is just multiplying every entry of the matrix
by that scalar.
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Example 4.9: Scalar Multiplication

Consider the matrix C. Then

4C =

[
4(4) 4(−2) 4(0)
4(1) 4(0) 4(−1)

]
=

[
16 −8 0
4 0 −4

]
To add or subtract two matrices, the matrices must be the same size; and
if so, the addition (or subtraction) is done component-wise.

Example 4.10: Size Matters

A + C does not exist, because the matrices have different sizes (A
is a 3× 2 matrix, whereas C is a 2× 3 matrix). However,

A+B =

 2 + 5 3 + 0
1 + 0 0 + (−2)
4 + 3 −1 + 1

 =

 7 3
1 −2
7 0


and

A−B =

 2− 5 3− 0
1− 0 0− (−2)
4− 3 −1− 1

 =

 −3 3
1 2
1 −2


The transpose of a matrix is formed by switching the rows and the
columns of the matrix. If the matrix is M , then the transpose is de-
noted by Mᵀ.

Example 4.11: Transpose

Consider the matrix A. Then

Aᵀ =

[
2 1 4
3 0 −1

]
The product of two matrices, M and N , can only be done if the number
of columns of matrix M is the same as the number of rows of matrix N .
Furthermore, the (i, j)-th entry of MN is the dot product of row i of
matrix M with column j of matrix N . If M has size m × n and N has
size n× p, then MN will have size m× p.

Example 4.12: Multiplication

Notice that AB does not exist, because A has 2 columns, whereas
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B has 3 rows. However, we can compute AC.

AC =

 2(4) + 3(1) 2(−2) + 3(0) 2(0) + 3(−1)
1(4) + 0(1) 1(−2) + 0(0) 1(0) + 0(−1)

4(4) + (−1)(1) 4(−2) + (−1)(0) 4(0) + (−1)(−1)



=

 11 −4 −3
4 −2 0

15 −8 1


It should also be noted that matrix multiplication is not commutative.
In the above example, AC 6= CA. In fact, CA doesn’t even exist!!

A matrix M is said to be invertible, if there exists a matrix N such
that MN = I and NM = I. If such a matrix exists, then N is called
the inverse of M and is denoted by M−1. From this definition, you can
see that the only matrices that could possibly be invertible are square
matrices. However, not all square matrices are invertible. One way to
find the inverse of a n×n square matrix M is to form the matrix [M | In]
and find the row equivalent matrix in RREF. If you can get the row
equivalent matrix in the form [In | B], then B = M−1. If you can’t get
the left-side to be In, then M−1 does not exist.

Example 4.13: Matrix Inverse

Determine A−1, if it exists, for[
2 4
−1 −2

]
.

Solution: Form the matrix [A | I2] and row reduce:[
2 4 1 0
−1 −2 0 1

]
RREF−→

[
1 2 0 −1
0 0 1 2

]
Thus, A−1 does not exist.

Example 4.14: Matrix Inverse

Determine B−1, if it exists, for 1 2 −1
−2 0 1

1 −1 0

 .
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Solution: Form the matrix [A | I2] and row reduce: 1 2 −1 1 0 0
−2 0 1 0 1 0

1 −1 0 0 0 1

 RREF−→

 1 0 0 1 1 2
0 1 0 1 1 1
0 0 1 2 3 4

 .
Then,

B1 =

 1 1 2
1 1 1
2 3 4

 .

You can use inverses of matrices to solve systems of equations, where the
coefficient matrix is a square matrix.

Example 4.15: Inverse for Solutions

Solve the following system:

x + 2y − z = 4
−2x + z = 1
x − y = −5

.

Solution: As a matrix equation, this system becomes: 1 2 −1
−2 0 1

1 −1 0

 ·
 x
y
z

 =

 4
1
−5

 .
Notice that the coefficient matrix is B from the previous example.
So, the matrix equation is:

B ·

 x
y
z

 =

 4
1
−5

 .
Then,

B−1B ·

 x
y
z

 = B−1 ·

 4
1
−5

 .
So,  x

y
z

 =

 1 1 2
1 1 1
2 3 4

 ·
 4

1
−5

 =

 −5
0
−9

 .
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4.5 Determinants

The determinant of a square matrix M , denoted det(M) or |M |, is a
scalar value associated to the matrix that can be used to provide infor-
mation about the matrix, including analyzing solution sets to systems
of equations, finding the inverse of a matrix, finding eigenvalues, solving
differential equations, etc. There are several methods for determining
the determinant of a matrix, but we will focus on the cofactor expansion
method. We start by providing the formula for the determinant of a 2×2
matrix: ∣∣∣∣ a b

c d

∣∣∣∣ = ad− bc.

Example 4.16: Determinants

Find the determinant of ∣∣∣∣ 2 7
−5 3

∣∣∣∣ .
Solution: Using the formula provided above:∣∣∣∣ 2 7

−5 3

∣∣∣∣ = (2)(3)− (−5)(7) = 6 + 35 = 41.

We will use the determinants of these 2 × 2 matrices as building blocks
to find the determinants of larger matrices. Associated to any square
matrix is a sign matrix, which is a matrix whose entries are alternating
“+” or “-” signs, starting with a “+” sign in the upper left entry: + − + · · ·

− + − · · ·
...

...
...

. . .


Then, you can use this to find determinants of larger square matrices.

Definition 4.2: Determinant

The determinant of an n× n matrix A is:

det(A) := a11 det(A11)− a12 det(A12) + · · ·+ (−1)1+na1n det(A1n).
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where Aij denotes the (n − 1) × (n − 1) matrix formed from A by
deleting row i and column j.

If you notice, this is just an expansion along the first row of the matrix
A, with the alternating signs corresponding to the entries of the first row
of the sign matrix. This means that you generalize this idea to find a
determinant by expanding upon any row or any column of the matrix.

Example 4.17: Determinants

Compute:

det

 3 −1 2
1 4 0
−2 5 1


Solution #1: First, let’s follow the formula above exactly and ex-
pand upon the first row of the matrix given above, call it matrix
M . Then:

det(M) = 3

∣∣∣∣ 4 0
5 1

∣∣∣∣− (−1)

∣∣∣∣ 1 0
−2 1

∣∣∣∣+ 2

∣∣∣∣ 1 4
−2 5

∣∣∣∣
= 3(4− 0) + 1(1− 0) + 2(5− (−8))
= 12 + 1 + 26
= 39

Solution #2: We could notice that zero in position (2, 3) and calcu-
late the determinant by either expanding on the second row or the
third column. Let’s expand along the second row. To do this, we
will use the second row of the sign matrix: + − +

− + −
+ − +

 .
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Then, our determinant is computed as:

det(M) = −(1)|M21|+ (4)|M22| − (0)|M23|

= −1

∣∣∣∣ −1 2
5 1

∣∣∣∣+ 4

∣∣∣∣ 3 2
−2 1

∣∣∣∣− 0

The advantage of the zero is one less determinant!
= −1(−1− 10) + 4(3− (−4))
= −1(−11) + 4(7)
= 11 + 28
= 39

This process can obviously be continued to compute determinants of 4×4
matrices and larger, but along the way to compute the determinant you
will pass through determinants of 3× 3 matrices and then determinants
of 2× 2 matrices.

4.6 Eigenvalues and eigenvectors

Definition 4.3: Eigenvector

An eigenvector of an n×n matrix A is a nonzero vector ~x such that
A~x = λ~x for some scalar λ. A scalar λ is called an eigenvalue of A
if there is a nontrivial solution ~x of A~x = λ~x.

So, how do we find eigenvalues? Let’s look closer at the equation A~x =
λ~x:

A~x = λ~x
A~x = λI · ~x

A~x− λI · ~x = ~0

(A− λI)~x = ~0

.

Then, this matrix equation has nontrivial solutions when det(A−λI) = 0.
This equation is called the characteristic equation, with det(A−λI) being
called the characteristic polynomial.

Example 4.18: Eigenvalues

Determine the eigenvalues for the matrix[
2 −12
1 −5

]
.
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Solution: First form the matrix A− λI:

A− λI =

[
2− λ −12

1 −5− λ

]
.

Now, solvedet(A− λI) = 0:

(2− λ)(−5− λ)− (1)(−12) = 0
−10 + 3λ+ λ2 + 12 = 0

λ2 + 3λ+ 2 = 0
(λ+ 2)(λ+ 1) = 0

λ = −2,−1

So, the eigenvalues for the matrix A are −2 and −1.

Now that we can find eigenvalues, how do we find the corresponding
eigenvectors? Well, for a given eigenvalue λ, we just solve the matrix
equation (A− λI)~x = ~0.

Example 4.19: Eigenvectors

Determine the eigenvectors for the matrix from the previous exam-
ple.
Solution: Let’s start by finding the eigenvectors that correspond to
the eigenvalue λ = −2. So, we need to solve (A+ 2I)~x = ~0.[

4 −12 0
1 −3 0

]
RREF−→

[
1 −3 0
0 0 0

]
.

So, the eigenvectors that correspond to the eigenvalue λ = −2 are
{[3y, y]ᵀ | y ∈ R}.

Similarly, we can find the eigenvectors that correspond to λ =
−1. We just need to solve (A+ I)~x = ~0.[

3 −12 0
1 −4 0

]
RREF−→

[
1 −4 0
0 0 0

]
.

So, the eigenvectors that correspond to the eigenvalue λ = −1 are
{[4y, y]ᵀ | y ∈ R}.
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4.7 Exercises

1. Solve the following system by row reducing an augmented matrix
to RREF:

3x + 2y − z = 1
x + 2y + 2z = 0

2x + y − 3z = −1
.

2. Determine whether the following set of vectors is linearly indepen-
dent or linearly dependent in R4:


2
5
1
0

 ,


0
1
2
−1

 ,

−3

1
5
1


 .

3. Given the matrices

A =

 2 1
3 0
4 −5

 , B =

[
4 1 −1
2 2 9

]
, C =

 1 2 −1
2 3 0
0 1 −1


compute each of the following (if possible):

(a) 3A− 2Bᵀ

(b) BC

(c) BA

(d) C−1

4. Calculate the determinant of

A =

 2 1 −1
−3 0 0

4 1 5

 .
5. Determine the eigenvalues, along with the corresponding eigenvec-

tors, for

M =

[
1 1
4 1

]
.
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Chapter 5

Proofs Techniques

This chapter will serve as a brief review of the essential concepts needed
when proving or disproving mathematical statements. Some of the con-
cepts presented in this chapter overlap with content in the chapter on
calculus.

Mathematical Statements are either true or false.

Example 5.1: Statements

The following are mathematical statements:

1. 3 is even.

2. f(x) is differentiable for x ∈ R, where f(x) = x2.

3. All prime numbers are odd, for p ≥ 3.

For clarity it is often useful to use “if-then” statements.

p q p −→ q
T T T
T F F
F T T
F F T

5.1 Proof Techniques

In this section a verity of proof techniques and some examples will be
discussed.

51
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5.2 ε− δ Style Proofs

For limits, sequences, and series this style proof is popular. More infor-
mation about this style proof technique is given in Chapter 2 that reviews
concepts from calculus. A few examples are given here to illustrate this
style of proof.

Definition 5.1: Converging Sequence

A sequence {an} of real numbers converges to L ∈ R if ∀ ε >
0,∃N0 ∈ N such that if n > N0, then |an − L| < ε.

Example 5.2: Sequence Converges

Prove that
{
n+5
n+1

}
converges to 1.

Proof. Consider

{sn} =

{
n+ 5

n+ 1n≥1

}
Let ε > 0. Choose N0 = d 4

ε e. Now, suppose n > N0. So, n > 4
ε ,

and n > 4
ε − 1. Thus, 4

n+1 < ε. This means∣∣∣∣ 4

n+ 1

∣∣∣∣ < ε =⇒
∣∣∣∣n+ 5

n+ 1
− 1

∣∣∣∣ < ε.

Therefore,
{
n+5
n+1

}
converges to 1.

Definition 5.2: Limit

For f : S → R, with S ⊆ R, we say

lim
x→a

f(x) = L if ∀ ε > 0,∃δ > 0

such that

if 0 < |x− a| < δ, then |f(x)− L| < ε.

Using the limit definition prove limx→3(4x+ 7) = 19.
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Example 5.3: Prove limx→3(4x+ 7) = 19.

Proof. Let f(x) = 4x + 7 and a = 3, L = 19, and lastly let ε > 0.
Set δ = ε

4 . Now, let x be such that

0 < |x− 3| < δ.

Then,

|x− 3| < ε

4
=⇒ 4|x− 3| = |4x− 12| = |4x+ 7− 19| < ε.

Thus, the limit exists and

lim
x→3

f(x) = 19.

5.2.1 Mathematical Induction

When a statement P (n) is based on an index n, and the goal is to show
that P (n) is true for all values of n ∈ N, n ≥ n0. The idea becomes:

1. Show P (n0) is true as a base or anchor step.

2. Show that P (k) =⇒ P (k + 1) for some k ≥ n0.

In order to give some examples some definitions are given.

Definition 5.3: Divergent Sequence

A sequence {an} of real numbers is said to diverge to infinity if for
all M ∈ N there exists N0 ∈ N such that if n > N0, then an > M .

Definition 5.4: Infinite Series

For a sequence of real numbers {an}, we define the infinite series to
be
∑∞
i=1 ai.

Definition 5.5: Sequence of Partial Sums

For any n ∈ N, we write sn =
∑n
i=1 ai. Then, we define the sequence
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of partial sums as {sn}.

Definition 5.6: Converges

The series
∑∞
i=1 ai converges to L ∈ R if {sn} converges to L. If

{sn} diverges to infinity, then so does the series.

With the given definitions defined we can consider the following ex-
ample:

Example 5.4: Show
∑∞
i=1

1
2i converges.

Start by considering the values of {sn}.

s1 =
1

2
, s2 =

3

4
, s3 =

7

8
, s4 =

15

16

Conjecture that

sn =
2n − 1

2n
for n ≥ 1.

Thus, we are conjecturing that

n∑
i=1

1

2i
=

2n − 1

2n
for n ≥ 1.

Lets use induction to prove this claim:

Proof. Let n ∈ N, with n ≥ 1.
Base or Anchor Step:

1∑
i=1

1

2i
=

1

2
and

21 − 1

21
=

1

2
.

As 1
2 = 1

2 , the result holds when n = 1.
Inductive Step: Assume true for some k ≥ 1. So,

k∑
i=1

1

2i
=

2k − 1

2k
.
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Then,

k+1∑
i=1

1

2i
=

k∑
i=1

1

2i
+

(
1

2k+1

)
=

2k − 1

2k
+

1

2k+1
=

2k+1 − 2 + 1

2k+1
=

2k+1 − 1

2k+1

Therefore by the principal of mathematical induction,

n∑
i=1

1

2i
=

2n − 1

2n
.

Next show
{

2n−1
2n

}
converges to 1. Then, conclude the series

also converges to 1.

5.3 Proof by Contradiction

When a direct proof doesn’t work this method can be used to show some-
thing does not have a property or that something does not exist.

The idea here is to prove

p =⇒ q,

suppose p and q̃. Then show this leads to a contradiction.

Example 5.5: Infinitely Many Primes

Prove that there are infinitely many prime numbers. A sketch of
the proof is given here.

Proof. Assume, to contradict, there are finitely many prime num-
bers. Lets assume that there are a prime numbers. So a list of all
prime numbers would be:

P1, P2, P3, P4, . . . , Pa−1, Pa.

Then, set
M = (P1 · P2 · P3 · · ·Pa) + 1.
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M > 1, so there exists a prime in the list such that Pk|M . Thus,

Pk

∣∣∣∣[(P1P2 · · ·Pk · · ·Pa) + 1],

and

Pk

∣∣∣∣(M − P1 · P2 · · ·Pa) =⇒ Pk|1 =⇒ Pk = 1.

Here Pk is prime and Pk = 1, a contradiction.

5.4 Direct Proof

This method should be implemented as often as possible when looking to
show that p =⇒ q. The idea is to show p =⇒ q is true, suppose p is true
and then show that q is a logical consequence of p.

5.5 Proof by Contrapositive

This proof technique is used in similar places to proof by contradiction.
It is employed when q is less complicated than p to work with. The idea is
to show p =⇒ q, suppose that q̃ and then show p̃. Thus, you are proving:

q̃ =⇒ p̃.

Example 5.6: For x ∈ Z, 3x− 7 is even iff x is odd.

Proof. Let x be an integer.

⇐ Suppose x is odd. Then,

∃ n ∈ Z such thatx = 2n+ 1.

3x− 7 = 3(2n+ 1)− 7 = 6n− 4 = 2(3n− 2)

and 3n− 2 ∈ Z. Thus, 3x− 7 is even.

⇒ Showing the contrapositive. Assume x is not odd, which
means x is even. Then, ∃ m ∈ Z such that x = 2m. Now

3x− 7 = 3(2m)− 7 = 6m− 7 = 6m− 8 + 1 = 2(3m− 4) + 1

where 3m− 4 ∈ Z. Thus, 3x− 7 is odd, as desired.
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Therefore 3x− 7 is even if and only if x is odd.

5.6 Subset and Set Equality Proofs

When considering specific sets or set identities this method of proof is
employed. The idea is given two sets A and B:

1. To show A ⊆ B, show arbitrary x ∈ A is also in B.

If x ∈ A, then x ∈ B.

2. To show A = B, show A ⊆ B, and B ⊆ A.

x ∈ A iff x ∈ B.

5.7 Existence and/or Uniqueness Proofs

For a uniqueness proof the idea becomes to let x1, x2 have a given prop-
erty. Then show x1 = x2.

5.8 Function Proofs

Function proofs are used to show properties like a function is one-to-on,
(1-1), or onto.

5.9 (If and only if): p←→ q

The main idea when examining p ←→ q is to prove both: p =⇒ q and
q =⇒ p.

5.10 Exercises

1. Given an =
{

1
n

}
, find and prove a closed form for sn. Then show

{sn} diverges.

2. Given f(x) = 2x− 9 use a ε− δ proof to show the limx→5 f(x) = 1.

3. Let n ∈ Z. Prove that 2n2 +n is odd if and only if cos(nπ2 ) is even.

4. Use the three parts described below to prove:

∞∑
k=1

1

(3k − 2)(3k + 1)
converges to

1

3
.
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(a) Let {sn} be the sequence of partial sums for n ≥ 1. Compute
the first several values of the sequence and then conjecture a
closed form formula for a general term of {sn}.

(b) Use induction to prove your conjecture from part (a).

(c) Using the result of part (b) as a lemma, prove that the se-
quence of partial sums converges to 1

3 , and use this to conclude
that the original series converges to 1

3 as well.



Chapter 6

Statistics Review

This chapter will serve as a brief review of the essential concepts encoun-
tered in statistics course.

6.1 Probability

Definition 6.1: probability space

The triple (Ω, β, P ) is called a probability space where

• Ω is the sample space.

• β is the set consisting of all events we can assign as outcomes.
β is also called an event space.

• P is a probability measure that assigns probabilities to the
events in β.

The probability measure must satisfy the conditions:

• For any event A ∈ β, P (A) ≥ 0.

• P (Ω) = 1.

• Let A1, A2, . . . be events such that Ai ∩Aj = ∅ for all i 6= j then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).
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Theorem 6.1: Probability Theorems

1. P (A ∪B) = P (A) + P (B)− P (A ∩B).

2. Complement: P (A) = 1− P (Ac) or P (A) = 1− P (Ā).

3. P (
⋃n
i=1Ai) ≤

∑n
i=1 P (Ai).

Definition 6.2

he conditional probability that event A occurs given that B occurs
denoted as P (A|B) is defined as

P (A|B) =
P (A ∩B)

P (B)
. (6.1)

Read P (A|B) as “the probability of A given B.”
Rearranging (6.1) results in

P (A ∩B) = P (A|B)P (B).

Definition 6.3: Independent Events

Events A and B are independent if and only if either of the following
occur:

1. P (A|B) = P (A)

2. P (B|A) = P (B)

Theorem 6.2: Independent Events

EventsA andB are independent if and only if P (A∩B) = P (A)P (B).

Definition 6.4: Mutually Independent

Events A1, A2, . . . , Ak are said to be mutually independent if and
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only if for any I ⊆ {1, 2, . . . , k},

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P (Ai).

6.2 Random Variables and Probability
Distributions

Definition 6.5: Probability Mass Function

A probability mass function (pmf) is a function that assigns each
element of the sample space a real number.

Capital letters such as X, Y , and Z are used to denote a random vari-
able. Random variables are typically classified as being either discrete or
continuous. It is also possible to considered a mixed random variable.

Definition 6.6: Expected Value

The mean (expected value) and variance of a discrete random vari-
able X are defined as

µ =
∑
x

xP (X = x)

and

σ2 = V (X) =
∑
x

(x− µ)2P (X = x) =
∑
x

x2P (X = x)− µ2.

Definition 6.7: Mean Discrete Random Variable

Let g(·) be a function. Then E(g(X)) =
∑
x g(x)P (X = x).

The variance of a random variable is given by:

V (X) = E(X2)− µ2.

Definition 6.8: Binomial Experiment

n experiment is said to be a binomial experiment if
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1. The experiment is performed n times and n is fixed. Each
repetition of the experiment is called a trial.

2. The trials are independent.

3. Each trial results in one of two outcomes. One outcome is
called a success and the other a failure.

4. For each trial, P(success)=p and P(failure)= (1− p).

In a binomial experiment the random variable of interest is X = number
of successes out of the n trials.

Definition 6.9: Discrete Random Variable

A discrete random variable X is said to have a binomial distribution
with parameters n and p (X ∼ Binomial(n, p)) if

P (X = x) =

(
n

x

)
px(1− p)n−x

for x = 0, 1, 2, . . . , n and p ∈ [0, 1].

In the case of a discrete random variable the expected value E(X) = np
and the variance is defined by V (X) = np(1− p).

Definition 6.10: Poission Distribution

A discrete random variable X is said to have a Poisson distribution
with parameter λ (X ∼ Poisson(λ)) if

P (X = x) =
e−λλx

x!

for x = 0, 1, 2, . . . and λ > 0.

Example 6.1: Poisson Random Variable
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Find the mean of the Poisson random variable.

E(X) =

∞∑
x=1

xP (X = x)

=

∞∑
x=1

x
e−λλx

x!

= e−λ
∞∑
x=1

λx

(x− 1)!

= e−λ
(
λeλ
)

= λ

Definition 6.11: Probability Density Function

The probability density function (pdf) of a continuous random vari-
able X, denoted as f(x) is a function that must satisfy the following:

1. For all x, f(x) ≥ 0.

2. The area under f(x) is 1. (
∫∞
−∞ f(x)dx = 1.)

3. P (a ≤ X ≤ b) is area under the curve between a and b.

P (a ≤ X ≤ b) =
∫ b
a
f(x)dx.

Definition 6.12: Expected Value

Let X be a continuous random variable with probability density
function f(x). The mean (expected value) and variance of X are
defined as

µ = E(X) =

∫ ∞
−∞

xf(x)dx

and

σ2 = V (X) = E((X − µ)2) =

∫ ∞
−∞

(x− µ)2f(x)dx

=

∫ ∞
−∞

x2f(x)dx− µ2 = E(X2)− µ2.

If a and b are non-zero constants then E(aX + b) = aE(X) + b and
V (aX + b) = a2V (X).
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Example 6.2: Create New Random Variables

Suppose E(X) = −5, V (X) = 3, and Y = 2X − 5. Find the mean,
variance, and standard deviation of Y .

E(Y ) = E(2X − 5) = 2E(X)− 5 = 2(−5)− 5 = −15

V (Y ) = V (2X − 5) = 22V (X) = 4(3) = 12

=⇒ the standard deviation of Y is
√

12.

Definition 6.13: Joint Probability Mass Function

Let X and Y be two random variables.

1. If X and Y are discrete random variables then the joint prob-
ability mass function is p(x, y) = P (X = x, Y = y).

2. If X and Y are continuous random variables then the joint
probability density function is a function f(x, y) that satisfies

(a) f(x, y) ≥ 0 for all (x, y) ∈ R2 and

(b)
∫∞
−∞

∫∞
−∞ f(x, y)dxdy = 1.

Theorem 6.3: Expected Value of Bivariate

Let X and Y be continuous random variables and g(·, ·) be a bivari-
ate function then

E(g(X,Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y)dxdy.

Definition 6.14: Covariance

Let X and Y be random variables with means µX and µY respec-
tively. The covariance between X and Y is

σXY = Cov(X,Y ) = E((X − µx)(Y − µY )).

When considering the covariance between two random variables X
and Y note that:
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1. −∞ < Cov(X,Y ) <∞.

2. The covariance measures the strength of the associating relationship
between two random variables.

3. Cov(X,X) = V (X).

4. The correlation between random variables X and Y is

ρXY = Cor(X,Y ) =
Cov(X,Y )

σXσY
.

It can be shown that −1 ≤ ρXY ≤ 1.

5. If the random variables X and Y are independent Cov(X,Y ) = 0.

6. If a1, . . . , an are non-zero constants and X1, . . . , Xn are random
variables then

V

(
n∑
i=1

aiXi

)
=

n∑
i=1

a2
iV (Xi)︸ ︷︷ ︸

Sum of the
individual
variances.

+ 2
∑
i<j

aiajCov(Xi, Xj)︸ ︷︷ ︸
Takes into account the
dependency between the
random variables.

.

7. If X1, . . . , Xn are independent then

V

(
n∑
i=1

aiXi

)
=

n∑
i=1

a2
iV (Xi)

Definition 6.15: Conditional Density Function

Let X and Y be continuous random variables. The conditional
density function of X given Y denoted as f(x|y) is

f(x|y) =
f(x, y)

f(y)
.

A similar definition exists for discrete random variables, and the bivariate
case for random variables can be extended to a multivariate case.

6.3 Normal Distribution
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Definition 6.16: Normal Distribution

A random variable X is said to have a normal distribution if its
probability density function is

f(x|µ, σ2) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
where −∞ < x <∞, −∞ < µ <∞ and σ2 ≥ 0.

The following are key features of the normal distribution.

1. Notation N(µ, σ2) is typically used to denote a normal distribution
with mean µ, and variance σ2.

2. E(X) = µ and V (X) = σ2.

3. The graph of the probability density function is

µ

4. Z ∼ N(0, 1) is called the standard normal distribution.

5. If X ∼ N(µ, σ2) then

Z =
X − µ
σ

∼ N(0, 1).

6. If X1, . . . , Xn are independent N(µ, σ2) random variables then X̄ ∼
N(nµ, nσ2).

7. If X1, . . . , Xn are independent random variables with E(X2) < ∞
then by the central limit theorem,

X̄ − µ
σ/
√
n

converges in distribution to Z ∼ N(0, 1)

as n→∞.
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8. IfX and Y are normally distributed random variables with Cov(X,Y ) =
0 then X and Y are independent. Note: In general this is not
true.

6.4 Chi-Squared Distribution

Definition 6.17: Chi-Squared Distribution

Let Z1, . . . , Zv be independent standard normal random variables
then Q =

∑v
i=1 Z

2
i has a chi-squared (or χ-squared) distribution

with v degrees of freedom.

Important properties of the chi-squared distribution include:

1. Typical notation includes Q ∼ χ2(v) or Q ∼ χ2
v.

2. The graph of the probability density function is

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

df=1
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df=3

df=4

df=10

3. E(Q) = v and V (Q) = 2v.

4. If X1, . . . , Xn are independent N(µ, σ2) random variables then

(n− 1)s2

σ2
∼ χ2(n− 1)

6.5 Student’s t-Distribution
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Definition 6.18: Student’s t-Distribution

Let Z ∼ N(0, 1) and Q ∼ χ2(v) be independent random variables.
Then

t =
Z√
Q/v

has a Student’s t-distribution with v degrees of freedom.

The key points of Student’s t-distribution include:

1. Notation: t ∼ T (v)

2. The graph of the probability density function is

0

3. If X1, . . . , Xn are independent N(µ, σ2) random variables then

t =
X̄ − µ
s/
√
n
∼ Z or N(0, 1).

6.6 F -Distribution

We now look at Snedecor’s F -distribution quickly.

Definition 6.19: F -Distribution

Let Q1 ∼ χ2(v1) and Q2 ∼ χ2(v2) be independent random vari-
ables. Then

F =
Q1/v1

Q2/v2

has an F -distribution with v1 numerator degrees of freedom and v2

denominator degrees of freedom.
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Facts:

1. Notation: F (v1, v2).

2. The graph of the probability density function is given below.

0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

F (1, 10)

F (5, 5)

F (20, 20)

F (40, 40)

3. If F ∼ F (v1, v2) then 1/F ∼ F (v2, v1).

4. If t ∼ t(v) then t2 ∼ F (1, v).

Other important distributions exist including the negative binomial,
hypergeometric, uniform, exponential, beta, gamma, Weibull, and Cauchy
distributions.

6.7 Methods of Estimation

Definition 6.20: Point Estimate

A point estimate is a single number used to estimate a population
parameter.

Definition 6.21: Confidence Interval

A confidence interval is used to express the precision and uncer-
tainty associated with a particular sampling method.
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6.7.1 (1−α)× 100% Confidence Interval Notation

We call the interval a (1 − α) × 100% confidence interval. We will need
to determine α when doing the problems.

Example 6.3: 95% Confidence Interval

Find α for a 95% confidence interval:

=⇒ α = 0.05

(1−α)× 100% Confidence Interval for µ

We begin with the following assumptions:

1. Assume that a sample of size n is taken from a normally distributed
population.

2. The population standard deviation σ is assumed to be known.

Based upon the above assumption, we can show that

t =
x̄− µ
s/
√
n

This fact can be used to show that the formula for the (1 − α) × 100%
confidence interval for µ is(
x̄− tα/2(n− 1)(s/

√
n), x̄+ tα/2(n− 1)(s/

√
n)
)

= x̄±tα/2(n−1)(s/
√
n).

Confidence intervals can be constructed for all types of parameters
including µD, µ1 − µ2, p, and p1 − p2.

6.8 Hypothesis Testing

Court Case Analogy:

• At the start of a trial, a person is assumed to be innocent until
proven guilty.

• The evidence must be beyond a reasonable doubt to get a guilty
verdict.

• We would rather let a guilty person go free then send an innocent
person to jail.

• If there is not enough evidence to get a guilty verdict then we say
that the person is not guilty. We never say that the person is guilty.
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Definition 6.22: Null Hypothesis

The null hypothesis is the hypothesis to be tested. We assume that
this hypothesis is true. (“An individual is assumed to be innocent.”)
We denote the null hypothesis as H0.

Definition 6.23

he alternative hypothesis is the statement that is true if the null
hypothesis is false. (“An Individual is Guilty.” ) We denote the
alternative hypothesis as Ha.

The alternative hypothesis is also called the Researcher’s Hypoth-
esis.

Decisions:

In order to evaluate a hypothesis test:

• We take a random sample from the population.

• If the sample indicates there is enough evidence to believe that the
null hypothesis is false we reject the null hypothesis and assert
the alternative hypothesis.

• If the sample does not indicate that the null hypothesis is false we
fail to reject the null hypothesis and indicate that there is not
enough evidence to assert the alternative hypothesis.

WE NEVER ACCEPT THE NULL HYPOTHESIS OR SAY THAT THE
NULL HYPOTHESIS IS TRUE.
(A PERSON IS PRONOUNCED NOT GUILTY. WE DO NOT SAY
THEY ARE INNOCENT).

6.9 Errors in Hypothesis Testing:

Considering the types of errors that can occur.

Reality
Decision H0 is True H0 is False

Reject H0 Type I Error No Error

Fail to Reject H0 No Error Type II Error
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Type I Error: We put an innocent person in jail.

Type II Error: We let a guilty person go free.
We want to control both Type I and Type II errors. If we lower one

type of error we increase the other type of error.

Definition 6.24: Significance Level

The probability of making a Type I Error is called the signifi-
cance level. It is denoted by α.

P [Type I Error] = α

• We want to minimize Type I errors therefore we choose small values
for α. Typical values are .01, .05, or .10.

• If we reject the null hypothesis and assert the alternative hypothesis
we say the test

results are statistically significant at the α level.

• If we fail to reject the null hypothesis we say that the test results
are not statistically significant at the α level.

P [Type II Error] = β

Definition 6.25: Power of Hypothesis Test

The probability of rejecting the null hypothesis given that it is false
is called the power of a hypothesis test.

Power = 1− β = P (Reject H0|H0 is false )

6.10 Hypothesis Testing for µ

To start:

Assumptions:

1. Assume that a random sample is taken from a normally distributed
population.

2. Also assume that µ is unknown.
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Hypotheses:

Three cases can be tested:

H0 : µ = µ0 H0 : µ = µ0 H0 : µ = µ0

Ha : µ < µ0 Ha : µ > µ0 Ha : µ 6= µ0

Test Statistic:

If the null hypothesis is true then

t∗ =
x̄− µ0

s/
√
n
∼ t(n− 1).

6.11 Exercises

1. X is a discrete random variable whose probability distribution is
given below.

x 0 1 2 3

P (X = x) 0.2 0.3 0.4 0.1

Find the mean, variance, and standard deviation of X.

2. Let X be a random variable whose pdf is f(x) = 3e−3x. Find
P (X ≥ x) and E(X).

3. Suppose E(X) = 30, V (X) = 10, and Y = 100 − 8X. Find the
expected value, variance, and standard deviation of Y .

4. Let Yi = β0 + β1xi + Ei where Eis are independent with E(Ei) = 0
and V (Ei) = σ2. Find the mean and variance of Yi for a given value
of xi.

5. A sample of 15 U.S. commercial aircraft yielded a sample mean age
of 14.25 years and a standard deviation of 9.35 years. Construct a
90% confidence interval for the true mean age of all U.S. commercial
aircraft and give an interpretation.

6. Fat contents (in percentage) for hot dogs is approximately normally
distributed. A sample of 10 randomly selected hot dogs was taken
and the fat content was determined for each hot dog. Construct
a 99% confidence interval for the true mean fat percentage of hot
dogs.

25.2 21.3 22.8 17 29.8 21 25.5 16 20.9 19.5
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7. You are testing H0 : µ = 45 versus Ha : µ > 45 using a .10 signifi-
cance level. After taking a random sample of size 63 you calculate
your test statistic and obtain t∗ = 2.17. Give the p-value and deci-
sion.

8. A soda company distributes soda in cans labeled 12 oz. The Bureau
of Weights and Measures randomly selects 36 cans, measures their
contents, and obtains a sample mean of 11.82 oz and a sample
standard deviation of .38 oz. At the .01 significance level is there
enough evidence to conclude that the soda company is cheating
consumers.



Chapter 7

Scientific Computing
Resources

The need to use a programming language or do numerical simulation
when solving mathematical problems is constantly increasing. This chap-
ter has a few places where you can look to find the basics of programming.
The goal here is to be a starting point for the reader. The subsections
give a starting point for the reader to find some functional web-based
resources that will get them coding quickly.

7.1 Collaborative Computing in The Cloud

Web based platforms for doing computational science have are starting
to really take off. Most of these resources have a place where users can
register a free account and then start using the tools for their own prob-
lems. This has the added benefit of novice users not needing to install
lots of software out of the gate.

One of the best collections of tools can be found on

https://cocalc.com/

COCALC, or Collaborative Calculation and Data Science has a collection
of tools all in one place for students to use. Included in the online set of
tools:

1. Jupyter Notebooks

2. A LATEX Editor

3. An Online Linux Environment

75
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4. Octave - A mathematical programming syntax largely compatible
with MATLAB.

5. R - Statistical computing environment.

6. Python - remote environment allowing for scripting and interactive
notebooks, and graphical application development.

7.2 Integrated Development Environments

There are lots of integrated development environments (IDE) that can
be used for scientific computing. A quick web search will produce more
than you can easily invest your time in. Each has its own tutorials that
can assist a user with getting it up and running, and some have nice
web-based area’s where you can test drive them online. To be concise
in this document I will only point out two that have been fairly easy for
students to get up and running:

7.2.1 Spyder

The Scientific Python Development Environment (Spyder) has a full set
of tools for interactive python development.

https://www.spyder-ide.org/

The resource is free and open source and dose some very nice data explo-
ration, and visualization for scientific computing.

7.2.2 Jupyter

Jupyter is a web application that can be used to create and share scientific
documents. The underlying compute kernel can be set to many different
programming languages including: sage, R, python, octave, and C++.
You can easily test out Jupyter’s notebook and lab environments online
at:

https://jupyter.org/

Using the online web interface here allows a user a nice starting point and
the chance to see some well written tutorials in an open-source notebook
setting. The reader is encouraged to explore at the Lorenz System that
can be found at:

https://jupyter.org/try

Note some great tutorials for Jupyter are available. Look at:

https://www.dataquest.io/blog/jupyter-notebook-tutorial/

for a jumping off point from the people at Dataquest.

https://jupyter.org/
https://jupyter.org/try
https://www.dataquest.io/blog/jupyter-notebook-tutorial/
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7.3 An Hour of Python

Trinket has come up with some nice tutorials for basic python computa-
tion. These can be found at:

https://hourofpython.com/

Their are lots of basic coding examples to get a user started. This includes
coding with python Turtles, and interactive code blocks that showcase
how procedural programming is accomplished.

7.4 Trinket

For a user that wants to be able to have a coding environment on any
web-based document trinket offers embedded coding frameworks.

https://trinket.io/

Using the framework from the Trinket site you can run, write, and share
code on any device. These code spinets can be placed into a course
or learning management system for students to share interactively their
work.

7.5 Shodor

For a student looking to learn how to code, Shodor is a National resource
for computational science education.

www.shodor.org

There is a full set of tools and tutorials for scientific computing on their
site.

7.6 Exercises

1. Explore Lorenz System that can be found at:

https://jupyter.org/try

Be sure to use the interactive sliders that show how model param-
eters effect the system.

2. Use one of the web-based resources above to create Jupyter note-
book that will assist you in visualizing the output of a mathematical
function.

https://hourofpython.com/
https://jupyter.org/try
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3. Share an interactive notebook on CoCalcs website with another
person and see how you can both collaborate on a scientific work
simultaneously.



Chapter 8

Data Sets and R Software
Tool

This chapter will serve as a brief introduction to looking at large data
sets and manipulating and exploring these data sets using the R software
tool.

8.1 Tidy Data

The typical workflow for data analysis looks something like:

Notice the feedback between the visualization, Model, and Transforming
the Data. In order to easily work with data in software tools like R it is
best to ensue that the data is tidy. Specifically it is useful to have each
variable be a single column in the data set and each observation has its
own row.

79
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Once your data is organized you are ready to start manipulating and
analyzing it using R.

8.2 Running R

The R software can be run using R studio or through jupyter style note-
books. Look at:

https://rstudio.com

and

https://jupyter.org

for more information about installing these tools locally on your own
machine.

In either environment you can run R commands that will allow you
to work with and analyze your data.

Example 8.1: Installing a Library

Use the following command to install the “tidyverse” library.

install.packages("tidyverse")

Then you can load the library using:

library(tidyverse)

Most operations will be done using function calls.

Example 8.2: Function Calls

Simple operations can be done using standard function calls:

https://rstudio.com
https://jupyter.org
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sqrt(4)

Nested function calls are allowed as well using a jupyter notebook
cell try:

ans1 = c(7,42,1,25)

ans2 = log(ans1)

ans3 = round(ans2,2)

ans4 = diff(ans3)

ans5 = diff(round(log(c(7,42,1,25)), 2))

print(ans1)

print(ans2)

print(ans3)

print(ans4)

print(ans5)

Note that the four elements are combind, then the natural log
is taken element by element. The answer is rounded to 2 deci-
mal places, and then the difference between consecutive elements is
found. The returned output is given as:

[1] 7 42 1 25

[1] 1.945910 3.737670 0.000000 3.218876

[1] 1.95 3.74 0.00 3.22

[1] 1.79 -3.74 3.22

[1] 1.79 -3.74 3.22

You can define functions to assist your work flow.

Example 8.3: Define Functions

The following defines the subtraction of two items.

my_func = function(x,y){x - y}

Then it can be run by calling the function with variables or values.

8.3 Exercises

1. Try defining a function in R. Then call this function with several
values or predefined variables.



82 CHAPTER 8. DATA SETS AND R SOFTWARE TOOL



Index

F -distribution, 68
ε− δ proofs, 52
p-series, 19

antiderivative, 15
augmented matrix, 37
auxiliary equation, 33

beamer, 8
binomial experiment, 61
bivariate, 64

chain rule, 17
characteristic equation, 33
chi-squared distribution, 67
cofactor, 45
conditional density function, 65
confidence interval, 69
contradiction, 55
contrapositive, 56
convergenc tests, 19
covariance, 64

derivative, 14
determinant, 45
diagonal matrix, 40
direct proof, 56
direction field, 26
diverge, 53

echelon form, 37
eigenvalue, 47
eigenvalues, 34
eigenvector, 47
eigenvectors, 34
elementary row operations, 37

Euler’s method, 31
exact equations, 28
existence proof, 57

fundamental theorem of calculus, 16

Gottfried Leibniz, 23

hypothesis testing, 72

IDE, 76
identity matrices, 40
independent, 60
infinite series, 18, 53
integrable, 16
integration, 16
integration by parts, 17
integration techniques, 17
interval of validity, 30
inverse, 43
invertible, 43

joint probability density function,
64

joint probability mass function, 64
Jupyter, 75
Jupyter Notebooks, 75

latex, 1
limit, 12
linear independence, 39
lower triangular, 41

mathematical induction, 53
method of fluxions, 23

normal distribution, 66
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null hypothesis, 71

Octave, 76
order, 24
ordinary differential equation, 24
ordinary differential equations, 23
Overleaf, 2

partial differential equation, 24
partial sums, 53
point estimate, 69
Poission distribution, 63
power series, 20
presentations, 8
probability complement, 60
probability density function, 63
probability space, 59
python, 76

random variable, 73
referencing, 7

scientific computing, 75
second order: differential equation,

33
separable, 27
sequence, 11
set equity proof, 57
slides, 8
standard normal distribution, 66
Student’s t-distribution, 67
subset, 57

Taylor’s Theorem, 31
test statistic, 73
tex, 1
type I error, 72
type II error, 72

uniqueness proof, 57
upper triangular, 41
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