
PLTL Calculus 2 Session 1 - Water Clock Design

PLTL students should attempt ALL the highlighted problems in this activity BEFORE
joining the peer-led session. Students will be asked during the session to provide their
answers. If you get stuck on any part the peer leader can help you.

Background Knowledge

1. Slice and Sum
The idea is to find the volume of a cross-sectional slice of the solid, and then add up
all such volumes. We want to use a very thin slice, of thickness dx or dy, since we are
going to be taking the limit as the thickness of each slice goes to zero to come up with
an integral that gives us the volume of the whole solid. So, all we need to do to get the
volume of a slice is multiply the thickness by the surface area of the slice.

Volume of Solid =

∫ b

a

(Area of Slice) (Thickness)

2. Volume of Revolution - Washer method
A specific case of the slice and sum method comes when we rotate a region from the xy-
plane around an axis, and use slices that are PERPENDICULAR to the axis of revolution.
This produces disks, or disks with holes in them that we call washers. Since the face of
each slice is a circle, we can find the volume of the resulting solid using this formula:

Volume of Solid = π

∫ b

a

[
(outer radius)2 − (inner radius)2

]
(thickness)

3. Volume of Revolution - Shell Method
Another specific case of the slice and sum method comes when we rotate a region from
the xy-plane around an axis, and use slices that are PARALLEL to the axis of revolution.
This produces cylindrical shells, and we can find the volume of the resulting solid using
this formula:

Volume of Solid = 2π

∫ b

a

(radius of cylinder) (height of cylinder) (thickness)



Example

Set up an integral that would give the
volume of the region generated by re-
volving the region R about the y-axis.

Example

Set up an integral that would give the
volume of the region generated by re-
volving the region R about the x-axis.



4. The arc length of a curve of the form y = f(x) from x = a to x = b is

L =

∫ b

a

√
1 + (f ′(x))2 dx

5. The surface area generated by revolving the curve f(x) from x = a to x = b around the
x-axis is

S = 2π

∫ b

a

f(x)

√
1 + (f ′(x))2 dx

Example

Let f(x) =
x4

2
+

1

16x2
, and let R be the region bounded by the graph of f and the x-axis

over the interval [0, 2].

(a) Set up an integral that would give the length of the curve y = f(x) on [1, 2].

(b) Set up an integral that would give the area of the surface generated when the graph of
f on [1, 2] is revolved around the x-axis.



Application

Before mechanical and digital clocks were invented, time was kept by water clocks (and other
devices). A water clock consists of a large container with a hole in the bottom. When filled
with water, the water drains out through the hole in such a way that the surface of the water
drops at a constant rate. In this way, the clock is easily calibrated: lines are marked on the
container with equal spacing, and the distance between two lines always corresponds to the
same interval of time (like an hour).

The goal would be to find the function formula f that would define the shape of exactly such
a water clock.

1. Assume that the water in the clock forms a solid of revolution generated when the curve
x = f(y) between y = 0 and y = b is revolved around the y-axis. Suppose that the water
level is at a variable point y. Use the disk method to find an integral that would give the
volume V of water in the container - use t as the dummy variable for integration.

2. As the water level in the clock drops, both the volume of water V and the water level y
change over time. Use the Fundamental Theorem of Calculus to differentiate both sides
of the volume formula with respect to time t.



3. Explain why dy/dt is a constant. Since we are assuming dy/dt will be given (-1 inch per
hour, for example), we need to know something about dV/dt. Torricelli’s Law says that
the rate of change of the volume of water in a container open to the air draining through
a hole with area A is

dV

dt
= −A

√
2gy

where g = 9.8 m/s2 is the acceleration due to gravity and y is the depth of the water
in the container. As an example, let A = 0.02 m2 be the area of the hole, and graph
dV/dt as a function of y on the window 0 ≤ y ≤ 1, −0.1 ≤ dV/dt ≤ 0. Describe how the
draining rate varies with the depth of the water.

4. Now assume dy/dt = −k m/s is the constant rate at which the water level drops, where
k > 0. Use Torricelli’s Law and Step 2 to show that the function f that gives the shape
of the water clock is

f(y) =
4

√
2gA2y

π2k2



5. Suppose you want to design a 24-hour clock that is b = 1 m high. This means that the
water level must drop 1/24 m each hour, so k = 1/24 m/hr. Suppose the hole in the
bottom of the tank has an area of A = 0.02 m2, so that the radius is approximately 8 cm
or 3 in. Find and graph the function that describes the container; find the upper radius
of such a container; and find the volume of water needed to fill this container.



PLTL Calculus 2 Session 2 - Integration Methods

In this activity we will go over the integration methods you covered in class over the last
week, and work on some applications of these methods.

1. Trig Substitution
Some integrals that have expressions with one of the forms a2−x2, a2+x2, or x2−a2 present
may require using trig substitution. It is important to know which trig substitution to
use in each case, AND what the corresponding interval for θ should be. Here’s a summary:

Example 1 Evaluate the indefinite integral

∫
dx√

(16− x2)3



Example 2
A total charge of Q is distributed uniformly on a line segment of length 2L along the
y-axis, centered at the origin. The x-component of the electrical field at a point (a, 0) on
the x-axis is given by

Ex(a) =
kQa

2L

∫ L

−L

dy

(a2 + y2)3/2

where k is a physical constant and a > 0.

(a) Use an appropriate trig substitution to evaluate the integral, and confirm that

Ex(a) =
kQ

a
√
a2 + L2



(b) Letting ρ = Q/2L be the charge density on the line segment, show that if L → ∞,
then Ex(a) = 2kρ/a.



2. Integration by Parts
The formula for integration by parts is∫

u dv = uv −
∫
v du

You split the original integrand into a product, call one factor u and the rest dv, and then
integrate dv to get v and differentiate u to get du. When you use these to write out the
expression on the right hand side of the formula, you should get an integral that is easier
to do than the one you started with.

Consider the set of integrals defined for every nonnegative integer n by

In =

∫
xne−x2

dx.

(a) Write down I1 and evaluate the integral. Can you calculate I2?

(b) Write down I3 and evaluate the integral. You will have to use integration by parts
and then use your answer to part (a).



(c) Use the result of part (b) to evaluate I5.

(d) Guess a formula for In where n is odd, and confirm your guess by evaluating I7.



PLTL Calculus 2 Session 3 - More Integration Methods

PLTL students should attempt ALL the highlighted problems in this activity BEFORE
joining the peer-led session. Students will be asked during the session to provide their
answers. If you get stuck on any part the peer leader can help you.

In this activity we will go over some of the integration methods you covered in class over the
last week, and work on some applications of these methods.

1. Partial Fraction Decomposition
When you are trying to integrate a rational function with denominator degree greater than
numerator degree, there are many different strategies for using partial fractions, depending
on whether the factors in the denominator are linear, quadratic, and or repeated. You
can check your class notes or the section in the e-book for a summary of these different
methods.

Example 1 Consider the indefinite integral

∫
x2 + 12x− 4

x(x + 2)(x− 2)
dx.

(a) Write a partial fraction decomposition for the integrand function in the form

A

x
+

B

x + 2
+

D

x− 2
(1)

(b) Integrate the formula given in equation (1) without finding the values of A,B, and
D (your peer leader will help you figure out the values of A,B, and D to do part (a)
during the live session)



Example 2
A computer algebra system (CAS) was used to determine that the value of the integral∫

2x4 + 14x3 + 14x2 + 51x + 19

x5 + x4 + 3x3 + 3x2 − 4x− 4
dx

was equal to the following antiderivative family:

5 ln(x− 1)− 3 ln(x + 1)− 3

x + 1
+

1

2
tan−1

(x
2

)
+ C

Use this fact to find the partial fraction decomposition of the function in the integrand.



2. General Integration Methods
Cars A, B, and C start from rest and move along a road with the following velocity
functions:

vA =
24t

t + 1
vB =

24t2

(t + 1)2
vC =

24t2

t2 + 1

Use long division to rewrite each velocity function.

Find the position functions for all three cars, sA(t), sB(t), sC(t). Assume that the common
starting point is the origin (this will help you determine the value of the integration
constant).

Which car is in the lead after 1 second? After 5 seconds?



3. Improper Integrals
You need to be able to deal with integrals where either the interval you are integrating
over has infinite length, OR where the function you are integrating has a vertical asymp-
tote within the interval you are integrating over. The Fundamental Theorem of Calculus
only works for finite closed intervals where the function you are integrating is continuous,
so we have to be careful and use a limit if that is not the case.

Example 3 We want to evaluate the integral

∫ 1

−1

1

x
dx. Explain why the following is in-

correct, and then calculate the integral correctly:∫ 1

−1

1

x
dx = ln |x|

∣∣∣∣1
−1

= ln(1)− ln(1) = 0



Example 4
The probability that a computer chip fails after a hours of operation is given by

0.00005

∫ ∞
a

e−0.00005t dt

(a) Find the probability that a computer chip fails after 15,000 hours of operation.

(b) Of the chips still operating after 15,000 hours, what fraction of them will operate for
at least another 15,000 hours?

(c) The average lifetime until a computer chip fails is given by the integral below.
Calculate this value.

0.00005

∫ ∞
a

te−0.00005t dt



PLTL Calculus 2 - Session 4

Students should read through the activity and complete the highlighted portions of this
activity before the live session with the peer leader on Sunday.

1. Sequence and Series overview

A sequence is an ordered list of terms {a1, a2, a3, . . .}. Each number in the sequence
is called a term of the sequence, and the position of each term is called the index,
represented by the subscript.
If the terms of a sequence approach a unique number L as n increases, then we say that
the sequence converges to L, and we write

lim
n→∞

an = L.

Otherwise, we say that the sequence diverges.

For any sequence {an} = {a1, a2, a3, . . .}, the associated infinte series is the sum of its
terms,

a1 + a2 + a3 + . . . =
∞∑
k=1

ak

To determine if this adds up to a finite number, form the sequence of partial sums
{Sn} associated with the series:

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3
...

Sn =
n∑

k=1

ak

If this sequence {Sn} has a limit L, then we say that the infinite series converges to that
limit, and we write

∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak = L

Otherwise, we say that the series diverges.



Example 1 Consider the sequence {an} =

{
1

n(n + 1)

}
.

(a) Find the first 8 terms of the sequence. Does the sequence appear to have a limit?

(b) Now consider the infinite series
∞∑
k=1

1

k(k + 1)
. Find the first 5 terms of the sequence

of partial sums {Sn}. Find a formula for the general term Sn, and make a conjecture
about the value of the series.



Example 2
A ball is thrown upward to a height of h0 = 20 meters. After each bounce, the ball
rebounds to a fraction r = 1/2 of its previous height. Let hn be the height of the ball
after the nth bounce, and let Sn be the total distance the ball has traveled at the moment
of the nth bounce.

(a) Find the first 5 terms of the sequence of heights {hn}.

(b) Find an explicit formula for the nth term of the sequence {hn}. Make a conjecture
as to the limit of this sequence.

(c) Find the first 10 terms of the sequence {Sn}. Make a conjecture as to the total
distance traveled by the ball.



2. Recurrence relations

Some sequences have terms that are defined using the terms that come before them
in the sequence. This kind of relationship could be based on the previous term only,
like an+1 = 6an − 4, or on more than one of the previous terms in the sequence, like
an+1 = 3an − 2an−1 + 4an−2. The following examples involve working with recurrence
relations.

Example 3
A fishery manager knows that her fish population naturally increases at a rate of 1.5%
per month, while 80 fish are harvested each month. Let Fn be the fish population after
the nth month, where F0 = 4000 fish.

(a) Write out the first 5 terms of the sequence {Fn}, and try to guess a recurrence
relation that generates the sequence.

(b) Does the fish population increase or decrease in the long run? What if the initial
population was F0 = 5500 fish instead?

(c) Determine the initial fish population F0 below which the population decreases in the
long run.



Example 4
After many nights of observation, you notice that if you oversleep one night, you tend to
undersleep the following night, and vice versa. This pattern of compensation is describes
by the following relationship, for n = 1, 2, 3, . . .:

xn+1 =
1

2
(xn + xn−1)

where xn is the number of hours of sleep you get on the nth night, and x0 = 7 and x1 = 6
are the number of hours of sleep on the first two nights.

(a) Write out the first 7 terms of the sequence {xn} and confirm that the terms alter-
nately increase and decrease.

(b) The terms of the sequence can also be generated by the explicit formula

xn =
19

3
+

2

3
bn

What is the value of b?



PLTL Calculus 2 - Session 5 - Economic Stimulus

Suppose that one day a rich relative gives you $10, 000 to use however you want, no strings
attached. The average American in 2020 would end up saving less than 5% of the $10, 000,
with the rest of it being spent and going back into the economy. This spending generates
revenue through taxes, and it gets spent again. In this way, your money is actually spent
many times and it has the effect of stimulating the economy through what is known as the
multiplier effect. Governments occasionally provide an economic stimulus by offering tax
rebates or refunds. In this project we will take a look at a simplified explanation of how the
multiplier effect could lead to economic growth, under one particular theory of economics.
(It is important to note that not all economists agree that government stimulus spending
would have this kind of effect.)

1. Let’s go back to the first month after your $10, 000 gift, and assume that you save 5% of
it, spending 95% of it back into the economy. In this first month, how much do you save
and how much do you return to the economy?

2. Now suppose that each month the same cycles repeats: 95% of the current amount in the
economy is recirculated. Make a table showing the amount of money that is returned to
the economy in months 1, 2, 3, and 4. It is important to keep the formula for how you
calculated each amount, as well as the final totals.



3. The important question concerns the cumulative long-term effect of the recirculation of
the money after several months. Define the economic stimulus after n months to
be the total amount of money that is returned to the economy after n months - which is
different than the amount of money returned to the economy in month n. For the $10, 000
gift, write a geometric sum for the economic impact after n months, and call it I(n).

4. Using what you know about geometric sums with n terms, write down a formula for I(n)
that does not have a summation in it.

5. For the $10, 000 gift, make another table showing the economic impact after n months
for n = 1, 2, 3, 4, 5.



6. In theory, the recirculation of money continues indefinitely, so we can look at the economic
impact after n months as n becomes arbitrarily large. This gives us the total economic
impact of the original $10, 000 gift as the value of a geometric series. Write down that
geometric series, explain why it converges, and calculate the value I.

7. Now let’s generalize the situation and assume that we have an economic stimulus in the
amount of $A billion dollars. Let r be the spending rate; in the previous example, we
used r = 0.95. Explain why 0 ≤ r ≤ 1, write down a geometric sum for the economic
impact after n months in this case, and find the value of the total economic impact I.
What would be the total economic stimulus of $350 billion with an 80% spending rate?



8. The total economic stimulus I you just calculated in general is a function of both the initial
stimulus amount A as well as the spending rate r. Assume now that we let A be a fixed

value, so that I = I(r) =
A

1 − r
is a function of just r. What are the domain and range

of the total economic impact function in the context of this problem? Computing the
derivatives I ′(r) and I ′′(r), is the total economic impact function increasing or decreasing
on its domain? Is it concave up or concave down?

9. The sensitivity of the economic impact to changes in (or errors in estimating) the spending
rate is important. Suppose the spending rate changes from r to r + ∆r. Use a linear
approximation to find the resulting approximate change ∆I in the total economic impact
(in terms of A and r).



10. Suppose that with a 350 billion stimulus package that the spending rate increases from
r = 0.3 to r = 0.35. What is the approximate change in the total economic impact?

11. Suppose that with a 350 billion stimulus package that the spending rate increases from
r = 0.8 to r = 0.85. What is the approximate change in the total economic impact?

12. Note that the change in the spending rate is the same (∆r = 0.05) in both of the previous
two calculations. Is the change in the total economic impact greater when r is small or
large?



PLTL Calculus 2 Session 6 - Conditional Convergence

Before the live PLTL session on Sunday, students should read the background material for
each section and attempt the problems that are highlighted.

Background
In this project we will need to be familiar with series comparison tests and with conditional
and absolute convergence. Let’s review the concepts and do a few examples.

Comparison Test

Determine whether
∞∑
k=3

5

k4 + 10
converges or diverges.

Limit Comparison Test

Determine whether
∞∑

k=20

5k

k4 − 10
converges or diverges.



Absolute and Conditional Convergence

Determine if the following series converge absolutely, converge conditionally, or diverge.

∞∑
k=2

(−1)k√
k

∞∑
k=2

(−1)k+1k√
k5



Application
Please read through this introduction carefully so that you are familiar with the application
setting to be discussed!
In its simplest form, a crystal is a regular three-dimensional arrangement of oppositely-
charged ions of two elements, for example sodium and chlorine atoms in a salt crystal. Such
an arrangement is called a lattice. We will work with one- and two-dimensional rectangular
lattices, like those in Figure 1:

The structure of a crystal lattice is maintained by the balance of forces between the positive
and negative ions in the lattice. We want to know the total amount of energy required by
the entire lattice to hold a single ion in place - to answer this question, we need to consider
the forces between a fixed ion at the origin and all other ions in the lattice.

Two oppositely-charged ions attract each other and two like-charged ions repel each other.
The energy associated with a pair of ions is proportional to ±1/r, where r is the distance
between the ions. Choose (-) if the ions have opposite charges and we choose (+) if the
ions have like charges. So, the energy required to keep a single ion in place at the origin is
proportional to

M =
∑
k

(±)k
1

rk

This series that determines the energy of the lattice is called the Madelung constant for
the lattice. The sum includes all ions in the lattice except the fixed ion at the origin, and rk
is the distance between the fixed ion and the kth ion. The notation (±)k means to choose
either + or − depending on the sign of the kth ion.

1. Consider the one-dimensional lattice in Figure 1 with the fixed ion at the origin corre-
sponding to k = 0. To keep things simple, let’s assume that the distance between adjacent
ions is 1 unit. Explain why the energy associated with this lattice is:

M =
∞∑
k=1

(−1)k

|k|
+

−1∑
k=−∞

(−1)k

|k|
= −2

(
1− 1

2
+

1

3
− 1

4
+ . . .

)



2. The series in parentheses in Step 1 is the alternating harmonic series, which converges
to the number ln(2). The alternating harmonic series is a conditionally convergent
series, because the associated series of positive terms

∑
1/k diverges (the harmonic

series).

FACT: by rearranging its terms, a conditionally convergent series can be made to con-
verge to any real number! For example:

(a) Start with ln(2) = 1− 1

2
+

1

3
− 1

4
+ . . .. Multiply both sides of the equation by 1/2

to get a series for
1

2
ln(2).

(b) Add the two series together to show that

3

2
ln(2) = 1 +

1

3
− 1

2
+

1

5
+

1

7
− 1

4
+ . . .

(c) Finally, show that the right side of this equation is just a rearrangement of the origi-
nal alternating harmonic series. So, this brings out the question: what is the“correct”
order in which to evaluate the series for the Madelung constant?



3. Now consider the two-dimensional lattice in Figure 1. Assume again that the distance
between any ion and its nearest neighbor is 1 unit, which means that the ions have coor-
dinates (j, k), where j and k are integers and the fixed ion is at (0, 0). Explain why the
series for the Madelung constant is

M2 =
∞∑

j,k=−∞

(−1)j+k√
j2 + k2

,

with the term for (j, k) = (0, 0) omitted from the series.



4. Write out the eight terms of this series for the ions closest to the origin. How did you
choose the order of summation? Are there other possible orders?

5. Use the fact that the series
∞∑
k=0

1

k
diverges to show that the associated series to M2 with

only positive terms
∞∑

j,k=−∞

1√
j2 + k2

diverges. It is known that the series M2 actually

converges, which means that the series for M2 is conditionally convergent. So the same
problem with rearrangements that we saw in the one-dimensional case comes up here also.



6. Now we can work on the actually physical problem we are interested in, the three-
dimensional case.

(a) Make a rough sketch of a few ions in a regular three-dimensional lattice in which the
distance between nearest neighbor ions is 1 unit.

(b) Omitting the term with j = k = m = 0, explain why the Madelung constant in this
case is

M3 =
∞∑

j,k,m=−∞

(−1)j+k+m√
j2 + k2 + m2



(c) Show that M3 is a conditionally convergent series.

So we have well-defined physical constants M1, M2, and M3 specified in terms of a condi-
tionally convergent series, which has an infinite number of possible values depending on the
ordering of the terms. It turns out that for M2 the order of summation should start near
the origin and work outward along squares, and for M3 the order of summation should start
near the origin and work outward along cubes.

Conclusion: order matters with conditional convergence!



PLTL Calc 2 Session 7 - Series Approximations to π

Mathematicians have been approximating π for several millennia. For example, the Babylo-

nians took π to be equal to 3
1

8
, and the Egyptians used the value

(
4

3

)4

.

In the third century BCE Archimedes concluded that 3
10

71
< π < 3

1

7
, and the Chinese

matematician Liu Hui produced an estimate equivalent to π ≈ 3.141024 in the third century
CE.

Today, approximations that are correct to over one quadrillion digits have been calculated
using ingenious methods and powerful computers. In this project, we will explore some of
the most common approximations which rely on infinite series.

1. An approximation attributed to both James Gregory (1683-1675) and Gottfried Leibniz
(1646-1716) relies on the Taylor series for the inverse tangent function, f(x) = tan−1(x).

(a) Use the Taylor series for 1/(1 + x2) and integration to find a formula for the Tay-
lor series for f(x) = tan−1(x), and determine that this series converges as long as
−1 ≤ x ≤ 1.

(b) Substitute x = 1 into the Taylor series, which gives you a series that converges to
tan−1(1) = π/4.



(c) Write the first ten terms of the sequence of partial sums for the series. Assuming
that a calculator gives the “exact” value of π, what is the error in the approximation
to π/4 using ten terms?

(d) Use the Remainder in Alternating Series Theorem to estimate the error introduced
when the series is terminated after 100 terms.

(e) How many terms of this series must be used to obtain an approximation to π with
an error no greater than 10−6?



2. The Gregory/Leibniz series converges very slowly; the reason for this is because with
x = 1, the powers of x in the Taylor series do not decrease in size. Here is an idea for
obtaining better approximations.

(a) There is an addition rule for tangent that says

tan(x+ y) =
tan(x) + tan(y)

1− tan(x) tan(y)
.

Let p = tan(x) and q = tan(y). Show that tan−1(p) + tan−1(q) = tan−1
(
p+ q

1− pq

)
.

(b) The objective is to find small numbers p and q so that
p+ q

1− pq
= 1. If it can be

done, then we would have tan−1(p) + tan−1(q) = π/4, where a series can be used to
approximate tan−1(p) and tan−1(q).
Show that with p = 1/2 and q = 1/3, we have

π

4
= tan−1

(
1

2

)
+ tan−1

(
1

3

)
.



(c) Write the series for tan−1(1/2) and tan−1(1/3). Again assuming that a calculator
gives the “exact” value of π, what is the error in the approximation to π/4 using ten
terms in this case?

(d) Use the Remainder in Alternating Series Theorem to estimate the error introduced
when the series are terminated after 100 terms.

(e) How many terms of the series must be used to obtain an approximation to π with
an error no greater than 10−6? Compare this approximation to the previous one for
speed of convergence.



3. The idea used in part 2 was extended by John Machin in 1706 to obtain an improved
method for approximation π. Machin’s formula is

π

4
= 4 tan−1

(
1

5

)
− tan−1

(
1

239

)
.

(a) Write the series for tan−1(1/5) and tan−1(1/239). Again assuming that a calculator
gives the “exact” value of π, what is the error in the approximation to π/4 using ten
terms in this case?

(b) Use the Remainder in Alternating Series Theorem to estimate the error introduced
when the series are terminated after 100 terms.

(c) How many terms of the series must be used to obtain an approximation to π with
an error no greater than 10−6? Compare this approximation to the previous ones
for speed of convergence, and figure out how many terms of the series were needed
to approximate π to 100 decimal places.



4. The Indian mathematician Srinivasa Ramanujan (1887-1920) discovered the following
series representation for π:

1

π
=

√
8

9801

∞∑
k=0

(4k)!(1103 + 26390k)

(k!)43964k

Find the first four terms of the sequence of partial sums for the series and compute the
resulting approximations to π. What is the speed of convergence of these approximations?



PLTL Calculus 2 Session 10 – Polar Area 
 
The goal of this session is to get more familiar with polar integration and polar area, as 
well as to continue practicing with polar coordinates. 
 

The basic formula for polar area is 𝐴𝐴 = 1
2 ∫ (𝑓𝑓(𝜃𝜃))2 𝑑𝑑𝜃𝜃𝑏𝑏

𝑎𝑎 , where the curve is 𝑟𝑟 = 𝑓𝑓(𝜃𝜃) 
and 𝑎𝑎 ≤ 𝜃𝜃 ≤ 𝑏𝑏.  Use this setup to calculate the shaded area. 
 
 
 
 
 
 
 
 
 
 
 

 
2. Next we need to be sure that we recognize how polar coordinates work so that we 

can solve polar equations.  Explain why the point (−1,3𝜋𝜋/2) is on the polar graph of 
𝑟𝑟 = 1 + cos 𝜃𝜃 even though it does not satisfy the equation 𝑟𝑟 = 1 + cos𝜃𝜃. 
 
 
 
 
 



3. Now let’s work on finding the area between two polar curves.  The polar equation 
𝑟𝑟 = 1/2 is a circle of radius 1/2 centered at the origin, and the equation 𝑟𝑟 = cos 𝜃𝜃 is 
a circle of radius 1 centered at the point (1/2,0). 
 
(a) Sketch a graph of the two circles on the same set of axes and shade the region 
that is both outside the circle 𝑟𝑟 = 1/2 as well as inside the circle 𝑟𝑟 = cos 𝜃𝜃. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Determine the intersection points (𝑟𝑟,𝜃𝜃) of the two circles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Integrate to find the area that you shaded in part (a). 
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