
PLTL Calculus 1 Session 1 – Logarithmic Scales 
Students are expected to read through the activity and do the problems that are highlighted 
BEFORE the live meeting with the peer leader on Sunday 9/12.  The peer leader will discuss the 
other problems with you during the live session. 
 
Logarithms are used to measure quantities that vary over many orders of magnitude.  In this 
project, we explore two logarithmic scales used in science and engineering. 
 
Background Knowledge 
We will need to use that fact that logarithms and exponentials with the same base are inverses.  
In this project, we will only be dealing with the base 𝑏𝑏 = 10.  Here’s what those inverse 
relationships look like: 

log𝑏𝑏(𝑏𝑏𝑥𝑥) = 𝑥𝑥        and        𝑏𝑏log𝑏𝑏(𝑥𝑥) = 𝑥𝑥 
 

We will also need to use some rules of logarithms and exponentials, listed here: 
• 𝑏𝑏𝑥𝑥+𝑦𝑦 = 𝑏𝑏𝑥𝑥𝑏𝑏𝑦𝑦 
• 𝑏𝑏𝑥𝑥−𝑦𝑦 = 𝑏𝑏𝑥𝑥/𝑏𝑏𝑦𝑦 
• log𝑏𝑏(𝑥𝑥𝑥𝑥) = log𝑏𝑏(𝑥𝑥) + log𝑏𝑏(𝑥𝑥) 
• log𝑏𝑏(𝑥𝑥/𝑥𝑥) = log𝑏𝑏(𝑥𝑥) − log𝑏𝑏(𝑥𝑥) 
• log𝑏𝑏(𝑥𝑥𝑟𝑟) = 𝑟𝑟 ∙ log𝑏𝑏(𝑥𝑥) 

 
The Earthquake Magnitude Scale 
The magnitude 𝑀𝑀 of an earthquake is related to the released energy 𝐸𝐸 by the following 
equivalent formulas: 
 

log10 𝐸𝐸 = 4.4 + 1.5𝑀𝑀        or        𝐸𝐸 = (2.5 × 104) × 101.5𝑀𝑀 
 

where the energy 𝐸𝐸 is measured in joules, and the magnitude 𝑀𝑀 has no units.  Using the second 
formula, the energy released by an earthquake can be thought of as a function of the 
magnitude; that is, we could write the equation as 𝐸𝐸(𝑀𝑀) = (2.5 × 104) × 101.5𝑀𝑀. 
 
1. What is the magnitude of an earthquake that releases 4 × 1013 joules of energy? 

 
 
 
 
 
 
 
 
 
 



 
 

2. Compute the ratios 𝐸𝐸(2)/𝐸𝐸(1), 𝐸𝐸(3)/𝐸𝐸(2), and 𝐸𝐸(4)/𝐸𝐸(3).  Draw a conclusion about the 
value of 𝐸𝐸(𝑀𝑀 + 1)/𝐸𝐸(𝑀𝑀) for any 𝑀𝑀.  What does this mean about a one unit increase in 
magnitude, in terms of the energy released by an earthquake? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. A one megaton nuclear bomb releases 5 × 1015 joules of energy.  Compare that to the 
energy released by the following earthquakes: 

a. 1989 San Francisco, magnitude 7.1 (90 deaths) 
b. 1975 Tangshan China, magnitude 7.9 (500,000 deaths) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
The pH Scale 
The acidity of a solution is measured by the concentration of positively charged hydrogen ions, 
which are hydrogen atoms that are missing their single electron.  These hydrogen ions are 
denoted H+.  The concentration of hydrogen ions is denoted [H+], and is usually measured in 
units of moles per liter; a mole is Avogadro’s number of particles, which is about 6 × 1023. 
The pH scale is defined by the following equivalent formulas: 
 

pH= −log10[H+]        or        [H+]= 10-pH 
 

Pure water is neutral and has a pH of 7.  Acids have a pH less than 7, and bases have a pH 
greater than 7. 
 
4. What is the pH of a solution with a hydrogen ion concentration [H+] of 10−9 moles per liter?  

Is this solution an acid or a base? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. In terms of hydrogen ion concentration [H+], how much more acidic is acid rain with a pH of 
2 than ordinary rain with a pH of 6? 
 
 
 
 
 
 
 
 
 
 
 



 
 

6. Assume that a lake polluted by acid rain has 100 million gallons of water with a pH of 4. 
a. What is the hydrogen ion concentration [H+] of the lake? 

 
 
 
 
 
 
 
 

b. A chemical company dumps 100,000 gallons of acid with a pH of 2 into the lake.  
What is the new hydrogen ion concentration [H+] in the lake?  What is the new pH 
after the acid is added? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c. Assuming the lake had the capacity, how much pure water (pH 7) would need to be 
added to the lake to restore its pH to 5.5? 
 
 
 
 
 
 
 
 
 
 
 
 
 



PLTL Calculus 1 Session 2 – Sine Waves 
Students are expected to read through the activity and do the problems that are highlighted 
BEFORE the live meeting with the peer leader on Sunday Sept. 19.  The peer leader will discuss 
the other problems with you during the live session. 
 
Background Knowledge 
Sine waves can be used to model periodic functions – that is, functions that repeat their pattern 
of values after a set interval length.  In this project, we explore how to model the variation in 
sunlight at a specific latitude on earth throughout the year.  
We will need to know the structure of a general sine wave.  The formula is given below, and 
we’re going to use the variable 𝑑𝑑 in this project to be suggestive of the variable “day of the 
year.”  The basic sine wave graph 𝑦𝑦(𝑑𝑑) = sin(𝑑𝑑) looks like this: 

 
Notice that the midline is at 𝑦𝑦 = 0, the height above the midline is 1, and the graph repeats 
itself every 2𝜋𝜋 units.  The zeroes are at all multiples of 𝜋𝜋. 
 
As a generalization, for the function 

𝑦𝑦(𝑑𝑑) = 𝐴𝐴 sin�𝐵𝐵(𝑑𝑑 − 𝐶𝐶)� + 𝐷𝐷, 
 

• the amplitude is |𝐴𝐴| - that’s the height of the wave above the midline 
• the period is 2𝜋𝜋/|𝐵𝐵| - that’s how far you have to move for the graph to repeat itself 
• there is a phase shift of 𝐶𝐶 units to the right 
• there is a vertical shift up 𝐷𝐷 units 

 



Let’s figure out some specifics regarding this sine wave model 𝑦𝑦(𝑑𝑑) = 𝐴𝐴 sin�𝐵𝐵(𝑑𝑑 − 𝐶𝐶)� + 𝐷𝐷: 
 

1. The midline of the wave 𝑦𝑦(𝑑𝑑) would be at 𝑦𝑦 =______________.  The maximum value of  
 
𝑦𝑦(𝑑𝑑) is 𝑦𝑦 =______________ and the minimum value is 𝑦𝑦 =______________. 
 

2. What values of 𝑑𝑑 make 𝑦𝑦(𝑑𝑑) equal to the midline value?  (Hint: this is related to 
knowing the angles that make sin𝜃𝜃 = 0.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. At what values of 𝑑𝑑 does 𝑦𝑦(𝑑𝑑) achieve the maximum value?  At what values of 𝑑𝑑 does 
𝑦𝑦(𝑑𝑑) achieve the minimum value?  (Hint: this is related to knowing the angles that make 
sin𝜃𝜃 = 1 and sin𝜃𝜃 = −1.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Constructing a Daylight Model 
The amount of daylight on a given day is periodic with period equal to approximately 365 days.  
We will use the domain (input) variable 𝑑𝑑 for day of the year; 𝑑𝑑 = 0 corresponds to January 1, 
and 𝑑𝑑 = 365 corresponds to December 31 (so we are assuming it is a leap year for this model).  
The output of our model should be hours of daylight on day 𝑑𝑑.  The specific model for hours of 
daylight varies by location, based on the latitude of the location away from the equator.  
Indiana PA is roughly at 40° North latitude. 
You know that the hours of daylight on a given day varies throughout the year; in Indiana, mid-
summer days are very long, while mid-winter days are very short.  The least amount of variation 
between the maximum and minimum amount of hours per day occurs at the equator, when 
every day has about 12 hours of daylight all through the year.  On the other hand, the greatest 
amount of variation occurs at the North and South Poles, where the sun can go down and stay 
that way for months at a time in the Winter, but not set at all for months at a time in the 
Summer. 
The longest day of the year in Indiana PA is June 21 (Summer Solstice), with about 15 hours of 
daylight.  The shortest day of the year is Dec. 21 (Winter Solstice), with about 9 hours of 
daylight.  The first day of Spring is March 21 (Vernal Equinox), and the first day of Fall is 
September 21 (Autumnal Equinox). 
 
DO THIS: 
Your task is to create a sine wave model 𝑦𝑦(𝑑𝑑) = 𝐴𝐴 sin�𝐵𝐵(𝑑𝑑 − 𝐶𝐶)� + 𝐷𝐷 that gives the correct 
amount of daylight on day 𝑑𝑑 of the year in Indiana PA, where 𝑦𝑦 is in hours and 1 ≤ 𝑑𝑑 ≤ 365.  
Once you have the model, use it to figure out the amount of daylight on September 16. 
 
Make an attempt at this before the live session with the peer leader – you are not expected to 
get the answer beforehand, but you can try and think about it. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Sunrise/Sunset Models 
You might expect that the shortest day of the year, December 21, has the latest sunrise time 
and the earliest sunset time… but this is not true!  At 40° N latitude, the latest sunrise is at 7:25 
a.m. on January 4, 14 days after the Winter Solstice, and the earliest sunset is at 4:37 p.m. on 
December 7, which is 14 days before the Winter Solstice. 
Similarly, the earliest sunrise occurs at 4:30 a.m. on July 2, and the latest sunset is on June 7 at 
7:32 p.m.  These dates are 14 days after and 14 days before the Summer Solstice, respectively.  
So, even though the longest day of the year is on June 21, that is not the day with the earliest 
sunrise and latest sunset. 
 
DO THIS: 
Using sine functions, come up with a function 𝑟𝑟(𝑑𝑑) that gives the time of the sunrise on day 𝑑𝑑 
and a function 𝑠𝑠(𝑑𝑑) that gives the time of the sunset on day 𝑑𝑑.  Assume that both functions are 
measured in minutes, and 𝑟𝑟 = 0 and 𝑠𝑠 = 0 correspond to 4:00 a.m.  What can you say about 
the function 𝑦𝑦(𝑑𝑑) you created earlier in relation to these two functions 𝑟𝑟(𝑑𝑑) and 𝑠𝑠(𝑑𝑑)? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHALLENGE: A common misconception is that the amount of daylight we lose or gain each day 
is a constant.  Actually, it varies throughout the year.  Graph the daylight function 𝑦𝑦(𝑑𝑑) you 
created earlier, and use slope tools on your calculator to estimate the greatest amount of 
daylight lost or gained per day, and on what day(s) of the year that happens. 
 
It will be helpful to set the viewing window on your calculator so that the input variable goes 
from 0 to 365, and the output variable has max and min matching your answers from #1 on 
page 2 of this activity. 



PLTL Calculus 1 Session 3 - Limits

So far this month in class you covered ideas related to limits. Let’s go over these topics one
at a time, do some examples, and look at some applications. Students should read the intro
material for each section and attempt the highlighted problems before the live session with
the peer leader.

Infinite Limits occur when the y-values of a function f(x) get arbitrarily large (either
positive or negative) as x approaches a particular number a either from the right or from
the left. This also means that f(x) has a vertical asymptote at x = a. So, for a function
y = f(x) and a real number a, when we say we have an infinite limit we are dealing with at
least one of the following cases:

lim
x→a−

f(x) = +∞ lim
x→a+

f(x) = +∞

lim
x→a−

f(x) = −∞ lim
x→a+

f(x) = −∞

Although it is technically true in each of these cases to say ”the limit does not exist” and
just write ”DNE” instead of ±∞, it is always better to be more specific; if the limit does
not exist, but you can specify that the y-values approach +∞ or −∞, you should do just
that.

Example 1 The graph of f in the figure has vertical asymptotes at x = 1 and x = 2. Analyze
the following limits:

1. lim
x→1−

f(x) =

2. lim
x→1+

f(x) =

3. lim
x→1

f(x) =

4. lim
x→2−

f(x) =

5. lim
x→2+

f(x) =

6. lim
x→2

f(x) =



Example 2 Verify that the function g(x) =
x2 − 4x+ 3

x2 − 3x+ 2
is undefined at both x = 1 and

x = 2. Does this mean that the graph of g has vertical asymptotes at both x = 1 and x = 2?
Explain.

Example 3 Determining an infinite limit from a function formula can be harder than when
you have a graph to look at. In both cases below, the function has a vertical asymptote at
the x-value that is being approached. Determine if the limit is −∞ or +∞.

1. lim
x→0

x− 3

x4 − 9x2
2. lim

θ→π/2+
tan(θ)

Example 4 Sketch a possible graph of a function f , together with vertical asymptotes,
satisfying all the following conditions on [0, 4]: f(1) = 0; f(3) is undefined; lim

x→3
f(x) = 1;

lim
x→0+

f(x) = −∞; lim
x→2

f(x) = +∞; lim
x→4−

f(x) = +∞.



Limits at Infinity means we are analyzing the behavior of the y-values of a function f(x)
as x → −∞ or as x → +∞. In these cases, we call the behavior of the y-values the end
behavior of the graph of f . It’s possible that these y-values become arbitrarily large as
x becomes arbitrarily large (either positive or negative), and we end up with one of the
following 4 cases:

lim
x→−∞

f(x) = +∞ lim
x→+∞

f(x) = +∞

lim
x→−∞

f(x) = −∞ lim
x→+∞

f(x) = −∞

However, it’s also possible that the y-values of the function f approach a real number as x
gets arbitrarily large:

lim
x→−∞

f(x) = M or lim
x→+∞

f(x) = L

When either of these occur, we say that f has a horizontal asymptote to the left of
y = M and/or a horizontal asymptote to the right of y = L. (Make sure you can
explain why a function can have 0, 1, or 2 horizontal asymptotes.)

Example 5 Determine the end behavior of the given function in both directions, and then
list the horizontal asymptotes (if any).

1.
x4 + 7

x5 + x2 − x

2.
3x3 − 7

x2 − 5x3

3. −3e−x

4. tan−1(x)



Application 1
If a function f represents a system that varies in time t, the existence of lim

t→∞
f(t) as a real

number means that the system reaches a steady state, or equilibrium. For the following
systems, determine whether a steady state exists, and give the equilibrium value.

1. The population of rabbits on an island is given by P (t) =
3500t

t+ 1

2. The amount of a drug (in milligrams) in the blood after an IV tube is inserted is given
by D(t) = 200(1− 2−t)

3. The amplitude of a spring oscillator is given by A(t) = 2

(
t+ sin(t)

t

)



Continuity is a concept that means to be unbroken. From a limit standpoint, that means
that for a function f(x) to be continuous at a point x = a there must exist a real number L
so that:

(1) f(a) = L

(2) lim
x→a−

f(x) = L

(3) lim
x→a+

f(x) = L

In other words, the function must exist, the limit must also exist, and the function value and
limit must be equal to each other. Here’s why continuity is your best friend when working
with limits: if a function is continuous at a point x = a, then you can evaluate lim

x→a
f(x)

simply by evaluating f(a).

Example 6 Use continuity to evaluate each of the following limits:

1. lim
x→1

(
x+ 7

x− 5

)4
2. lim

θ→π
cos2(θ)− 6 sin(θ)

Example 7 A good way to make sure you know the definition of continuity is to work out the
answer to this problem. Determine the value(s) of the constant k that make f(x) continuous
at x = 0 if

f(x) =


x+ k

x+ 3
x < 0

100− x
50

x ≥ 0



There are three main ways that a function f could be discontinuous at a point x = a:

1. f has a vertical asymptote at x = a. This is usually signified by the function being of
the form #/0 when you plug in x = a.

2. f has a hole at x = a. This is usually a possibility when the function has the form 0/0
when you plug in x = a.

3. f has a jump at x = a. This is a possibility when f is defined with a piecewise formula.

Example 8 Determine the interval(s) on which the following functions are continuous:

1.
x2 − 4x+ 3

x2 − 1
2. csc(x)



Application 2
A basic problem that comes up all the time in science is finding solutions of the equation
f(x) = R. Sometimes these equations are complicated and finding solutions is computa-
tionally expensive, so it is worthwhile to apply a simple consequence of continuity called
the Intermediate Value Theorem to determine if solutions exist at all. Here’s what the
Theorem says:

Suppose f is continuous on the interval [a, b] and R is any number between f(a) and f(b).
Then there exists at least one number x = c in the interval (a, b) satisfying f(x) = R.

Example Assume you invest $250 at the end of each year for 10 years at an annual interest
rate r. The amount of money in your account after 10 years is given by

A(r) =
250((1 + r)10 − 1)

r

Assume your goal is to have $3500 in your account after 10 years. Show there is an interest
rate r between 1% and 10% that allows you to reach your financial goal, and estimate the
value of r to four decimal places.



PLTL Calculus 1 Session 4 – CO2 Emissions 
Students are expected to read through the activity and do the problems that are highlighted 
BEFORE the live meeting with the peer leader.  The peer leader will discuss the other problems 
with you during the live session. 
 
(Note: This project is an existing accompaniment activity to your e-book, Calculus Early 
Transcendentals by Briggs et al, published by Pearson.) 
 
The data shown in the figure below have become a cornerstone in the debate about global 
warming. Recorded at the Mauna Loa Observatory in Hawaii, the data give monthly 
measurements of atmospheric carbon dioxide (CO2) in parts per million over a 50-year period.  
 

 
In this project we investigate various approaches to describing the data with functions.  The 
data have two significant features: the graph rises steadily over time, but there is also a regular 
sequence of oscillations as shown in the magnification bump out graph.  We want to come up 
with a function formula, or model, that closely fits this data. 
 
1. Why would scientists want to determine a formula that models the data? 

 
 
 
 
 
 
 
 

 



Oscillations 
2. What is the period and amplitude of the oscillations?  (The period would be the length of 

time between the peaks, and the amplitude is half the distance from a peak to the following 
valley.) 
 
 
 
 
 
 

3. Assume that 𝑡𝑡 is measured in years and assume that 𝑡𝑡 = 0 corresponds to the year 1960.  
Use your answers to #2 and what you learned in last week’s activity to write a function in 
the form 𝑂𝑂(𝑡𝑡) = 𝐴𝐴 sin(𝐵𝐵𝑡𝑡) that describes only the oscillations in the data.  Then graph the 
function from 1960 to 2010, giving the window dimensions of your graph to best fit the 
graph on the screen. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Rising Base Curve 
4. The steadily increasing base curve in the picture given above corresponds to the average of 

the monthly data over a one-year period.  What sort of function would give a reasonable fit 
to this base curve?  Why do you think that? 
 
 
 
 
 
 
 



5. Two points from the data set are (0, 317) corresponding to the year 1960 and (40, 370) 
corresponding to the year 2000.  Find an equation of the line that passes though the points 
and plot that line on the given graph.  How well does the line fit the base curve? 
 
 
 
 
 
 
 
 
 
 

6. Find a different pair of points than the pair given in #5 that better fits the data.  Find an 
equation of the line that passes through those points instead.  Call this linear function 𝐿𝐿(𝑡𝑡). 
 
 
 
 
 
 
 
 
 
 
 

7. Another possible form for the increasing base function would be an exponential function of 
the form 𝐸𝐸(𝑡𝑡) = 𝐶𝐶𝑒𝑒𝑘𝑘𝑘𝑘, where 𝐶𝐶 and 𝑘𝑘 are constants.  Use the data points (10, 325) and 
(30, 354) to determine an exponential function that fits the base curve. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Combined Curve 
8. We can model a curve that closely fits the data as in the given picture by combining the 

oscillation function 𝑂𝑂(𝑡𝑡) from #3 with the linear function 𝐿𝐿(𝑡𝑡) from #6.   
Define 𝐶𝐶1(𝑡𝑡) = 𝑂𝑂(𝑡𝑡) + 𝐿𝐿(𝑡𝑡) as a CO2 function that fits the full data set.  Graph 𝐶𝐶1(𝑡𝑡) over 
the interval 0 ≤ 𝑡𝑡 ≤ 60, which includes a projection of the data through the year 2020, and 
write down the predicted amount 𝐶𝐶1(60) of CO2 for 2020. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9. We can also model a curve that closely fits the data as in the given picture by combining the 
oscillation function 𝑂𝑂(𝑡𝑡) from #3 with the exponential function 𝐸𝐸(𝑡𝑡) from #7.   
Define 𝐶𝐶2(𝑡𝑡) = 𝑂𝑂(𝑡𝑡) + 𝐸𝐸(𝑡𝑡) as a CO2 function that also fits the full data set.  Graph 𝐶𝐶2(𝑡𝑡) 
over the interval 0 ≤ 𝑡𝑡 ≤ 60, which includes a projection of the data through the year 2020, 
and write down the predicted amount 𝐶𝐶2(60) of CO2 for 2020. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10. Check out https://www.esrl.noaa.gov/gmd/ccgg/trends/ to see the actual amount of CO2 
recorded at the Mauna Loa Observatory in January 2020.  Which model was more accurate?  
What factors might explain the discrepancy? 

https://www.esrl.noaa.gov/gmd/ccgg/trends/


PLTL Calculus 1 Session 5 – Local Linearity 
 
Today we are going to use limits to help us approximate the slopes of curves at certain points.  
You have spent multiple weeks learning about how to calculate limits, and this activity is a major 
application of limits that you have started exploring in class as well. 
 
Consider the graph of 𝑓𝑓(𝑥𝑥) and its tangent line at the point (𝑎𝑎, 𝑓𝑓(𝑎𝑎)) as in Figure 1a below.  
The tangent line to a curve 𝑓𝑓(𝑥𝑥) at a point is the line that just touches the curve at that point and 
has the same direction as the curve at that point.  Because the graph is smooth at (𝑎𝑎, 𝑓𝑓(𝑎𝑎)) 
(meaning that it has no sharp corners), 𝑓𝑓(𝑥𝑥) looks and acts like the tangent line to 𝑓𝑓(𝑥𝑥) at 
 𝑥𝑥 = 𝑎𝑎, as long as we stay close to that point.  In fact, if we zoom in further on the curve near 
(𝑎𝑎, 𝑓𝑓(𝑎𝑎)), the line and the curve become nearly indistinguishable as in Figure 1b below.  For this 
reason, when we refer to the slope of the curve 𝑓𝑓(𝑥𝑥) at the point (𝑎𝑎, 𝑓𝑓(𝑎𝑎)), we mean the value of 
the slope of the tangent line to 𝑓𝑓(𝑥𝑥) at that point – they are interchangeable. 
 

 
 
In this project, we will consider two different ways to estimate the slope of a smooth curve 𝑓𝑓(𝑥𝑥) 
at the point (𝑎𝑎,𝑓𝑓(𝑎𝑎)): 
 

1. Use a graphing utility to zoom in on the graph of 𝑓𝑓(𝑥𝑥) closer and closer to the point 
(𝑎𝑎, 𝑓𝑓(𝑎𝑎)) until the curve appears linear, and use points on the curve to approximate the 
slope of the tangent line to 𝑓𝑓(𝑥𝑥) at that point 
 
 
 

2. Use the limit as 𝑥𝑥 → 𝑎𝑎 of the difference quotient  
 

𝑓𝑓(𝑎𝑎 + 𝑥𝑥) − 𝑓𝑓(𝑎𝑎)
𝑥𝑥

 , 
 



which gives the slope of the secant line to 𝑓𝑓(𝑥𝑥) containing the points (𝑎𝑎, 𝑓𝑓(𝑎𝑎)) and  
(𝑎𝑎 + 𝑥𝑥,𝑓𝑓(𝑎𝑎 + 𝑥𝑥)).  (In class, you will use the variable ℎ instead of 𝑥𝑥 to represent the 
small distance between the two 𝑥𝑥-values of the points – we are using 𝑥𝑥 here because 
we are going to enter the difference quotient into our calculator, and in many cases 
calculators only accept the variable 𝑥𝑥 as input). 
Here’s a look at the secant line we are talking about – make sure you understand how 
we got the difference quotient as the slope of this line. 

 
 

 
Background Knowledge 
 
Things we need to know to work on this project: 

• On the graphing calculator or in another graphing utility, how to enter a function, graph 
that function on a particular viewing window, use the Trace feature in the graphing 
window, view a Table of values for a function, and change settings for Tables. 

• The slope of a line containing the points (𝑎𝑎, 𝑓𝑓(𝑎𝑎)) and (𝑏𝑏, 𝑓𝑓(𝑏𝑏)) is 

𝑚𝑚 =
𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)

𝑏𝑏 − 𝑎𝑎
 

• The equation of a line with slope 𝑚𝑚 passing through the point (𝑎𝑎,𝑓𝑓(𝑎𝑎)) is 
 

𝑦𝑦 − 𝑓𝑓(𝑎𝑎) = 𝑚𝑚(𝑥𝑥 − 𝑎𝑎) 
• The meaning of the expression 

lim
𝑥𝑥→𝑎𝑎

𝐸𝐸(𝑥𝑥) = 𝐿𝐿 
 
is that the expression 𝐸𝐸(𝑥𝑥) has 𝑦𝑦-values that get closer and closer to 𝑦𝑦 = 𝐿𝐿 as the 
𝑥𝑥-values get closer and closer to 𝑥𝑥 = 𝑎𝑎. 
 
 
 



1. Consider the function 𝑦𝑦 = √𝑥𝑥 at the point (4,2). 
 

a. Enter the function 𝑦𝑦 = √𝑥𝑥 as Y2 in your calculator and plot the graph on the viewing 
window [0,8] × [0,4] (this notation means that 0 ≤ 𝑥𝑥 ≤ 8 and 0 ≤ 𝑦𝑦 ≤ 4).  Notice 
that the graph is definitely not linear at this viewing level, so we need to zoom in. 

b. Plot the graph instead on the viewing window [3,5] × [1.5,2.5].  The curve now 
should appear to be close to linear.  Use the Trace command to find the points on 
the graph for 𝑥𝑥 = 3.5 and 𝑥𝑥 = 4.5 (when using Trace, you can manually enter the 
exact 𝑥𝑥-values you want).  What is the slope of the line that contains those two 
points of the graph of the curve?  Use 8 digits of accuracy for the 𝑦𝑦-coordinates and 
slope, and put your answers in the first row of the table below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
c. Continue to fill out the table as you zoom in more and more on the point (4,2).  For 

each interval, we have picked a pair of points, with one point to the left of (4,2) and 
the other point to the right of (4,2).   
 

d. What would be a reasonable estimate of the slope of 𝑦𝑦 = √𝑥𝑥 at the point (4,2) 
based on the table values?  Use this slope estimate to write an equation for the 
tangent line to 𝑦𝑦 = √𝑥𝑥 at the point (4,2), and then enter the equation for the 
tangent line as function Y3 in your calculator.  Graph the function and tangent line 
together on the original viewing window [0,8] × [0,4]. 
 
 
 
 
 
 

Graphing Window Points on Curve Slope 
[3,5] × [1.5,2.5] (3.5,                                     ) 

(4.5,                                     ) 

 

[3.5,4.5] × [1.7,2.2]  (3.75,                                   ) 

      (4.25,                                   ) 

 

[3.75,4.25]
× [1.9,2.1] 

(3.9,                                     ) 

       (4.1,                                    ) 

 

[3.9,4.1]
× [1.95,2.05] 

 (3.95,                                    ) 

     (4.05,                                    ) 

 



e. Now we will examine the same question from the standpoint of the limit on the 
values of the difference quotient.  Write down the slope of the secant line to 𝑦𝑦 = √𝑥𝑥 
containing the points (4,2) and (𝑥𝑥,√𝑥𝑥).  Enter this as function Y1 in your calculator. 
 
 
 
slope of secant = 
 
 
 
 

f. In the Table Settings, make sure that the independent variable is set to ‘Ask’ instead 
of ‘Auto’. 

g. In the Table window, enter the sequence of 𝑥𝑥-values you listed for the points to the 
LEFT of (4,2) in the table from part (c).  What value does Y1 seem to be approaching 
as 𝑥𝑥 → 4? 
 
 
 
 
 
 
 

h. In the Table window, enter the sequence of 𝑥𝑥-values you listed for the points to the 
RIGHT of (4,2) in the table from part (c).  What value does Y1 seem to be 
approaching as 𝑥𝑥 → 4? 
 
 
 
 
 
 
 
 

i. Compare your answers in parts (g) and (h).  What would be a good estimate for the 
slope of the tangent line to 𝑦𝑦 = √𝑥𝑥 at the point (4,2)?  Is this the same as your 
answer to part (d)?  Why or why not? 
 
 
 
 
 
 



2. Next consider the function 𝑦𝑦 = |𝑥𝑥|. 
a. Graph 𝑦𝑦 = |𝑥𝑥| on the viewing window [−5,5] × [−1,5].  Explain why the function is 

not locally linear at the origin.  What does this mean about the tangent line to 
 𝑦𝑦 = |𝑥𝑥| at 𝑥𝑥 = 0? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. The graph of 𝑦𝑦 = |𝑥𝑥| IS locally linear away from the origin.  Write equations for the 
tangent lines to 𝑦𝑦 = |𝑥𝑥| for 𝑥𝑥 < 0, and equations for the tangent lines to 𝑦𝑦 = |𝑥𝑥| for 
𝑥𝑥 > 0.  (Hint – using the piecewise definition of the absolute value function will save 
you from doing any work like you had to do in Problem #1 above.) 
 
 
 
 
 
 
 
 
 
 
 
 
 



3. Now consider the piecewise defined function  

                                          
a. Use a graphing utility to graph 𝑓𝑓 on the viewing window [0,8] × [0,4] with 𝑎𝑎 = 2 

and 𝑏𝑏 = −6.  Is the function locally linear at 𝑥𝑥 = 4 with this choice of 𝑎𝑎 and 𝑏𝑏? 
(locally linear means smooth – in order to achieve this, the slope from the left and 
the slope from the right should match up.) 
 
 
 
 
 
 
 
 

b. Repeat part (a), but this time use 𝑎𝑎 = 1/2 and 𝑏𝑏 = 0.  Now is the function locally 
linear at 𝑥𝑥 = 4? 
 
 
 
 
 
 
 
 

c. Determine the values of 𝑎𝑎 and 𝑏𝑏 that make 𝑓𝑓 locally linear at 𝑥𝑥 = 4.  (Hint - you will 
want to revisit the work you did for Problem #1 above.) 



PLTL Calculus 1 Session 6 – Drug Rates 
Students are expected to complete the two parts of the activity that are highlighted before 
going to the live peer-led session on Sunday. 
When a drug is administered intravenously it enters the bloodstream immediately, producing 
an immediate effect for the patient.  The drug can either be given as a single rapid injection or 
at a constant drip rate (IV infusion).  Common drugs administered intravenously include 
morphine for pain, diazepam to control a seizure, and digoxin for heart failure.  In this activity, 
we will explore the differences between the two types of drug administration, and then 
calculate the rate of change of the drug in the bloodstream in each case. 
 
Background Knowledge 
Things we need to know to work on this project: 

• How to solve an exponential equation using logarithms 
 

• Exponential growth and exponential decay can always be modeled by a function of the 
form 𝐴𝐴(𝑡𝑡) = 𝐷𝐷𝑒𝑒𝑘𝑘𝑘𝑘 (or a transformation of this model), where 𝐷𝐷 is the initial dose of the 
drug and 𝑘𝑘 is the growth or decay constant for the drug model.   
If 𝑘𝑘 is positive, the model is for exponential growth; if 𝑘𝑘 is negative, the model is for 
exponential decay. 
 

• The slope of a line containing the points (𝑎𝑎, 𝑓𝑓(𝑎𝑎)) and (𝑏𝑏, 𝑓𝑓(𝑏𝑏)) is 
 

𝑚𝑚 =
𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)

𝑏𝑏 − 𝑎𝑎
 

 
Remember that this can also be viewed as the slope of the secant line to the function 𝑓𝑓 
between the two points, and also can be interpreted as the average rate of change of 𝑓𝑓 
over that interval. 

 
 

First type:  Single Rapid Injection 
With a single rapid injection, the amount of the drug in the bloodstream reaches its peak 
immediately, and then the body eliminates the drug exponentially.  The drug labetalol is used 
for the control of blood pressure in patients with severe hypertension.  The half-life of labetalol 
is 4 hours (this means that if you measure the amount of drug in the bloodstream at any 
particular time, there will be half that amount in the bloodstream 4 hours later).  Suppose that 
an initial dose of 35 mg is administered to a patient by rapid injection. 
 
 
 
 
 
 



1. Find a model of the form 𝐴𝐴(𝑡𝑡) = 𝐷𝐷𝑒𝑒𝑘𝑘𝑘𝑘 for the amount of drug in the bloodstream 𝑡𝑡 hours 
after the drug is administered.  You will need to use the information about the half-life to 
figure out the value of the constant 𝑘𝑘.  Round the value of 𝑘𝑘 to 3 decimal places.  Graph the 
function on the viewing window [0,24] × [0,40] and observe the end behavior. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
2. Find the average rate of change of the drug in the bloodstream, with units, for the time 

interval from 𝑡𝑡 = 0 to 𝑡𝑡 = 2, and then again for the time interval from 𝑡𝑡 = 4 to 𝑡𝑡 = 6.  
Make an observation about these rates of change in relation to the half-life of the drug; 
then, without calculating, estimate the average rate of change of the drug in the 
bloodstream over the time interval from 𝑡𝑡 = 8 to 𝑡𝑡 = 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3. In this step, we will calculate the instantaneous rate of change at 𝑡𝑡 = 4; this would be the 
exact rate at which the body is expelling the drug from the bloodstream after 4 hours.  
Write down the difference quotient for 𝐴𝐴 giving the rate of change from the point (4,𝐴𝐴(4)) 
to the general point (𝑥𝑥,𝐴𝐴(𝑥𝑥)).  Then, using a calculator, make a table of values for the 
difference quotient for a successive list of 𝑥𝑥 values moving closer and closer to 4.  Finally, 
make a reasonable assumption about the limit of these table values. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
4. Using your observations in parts 2 and 3 above, write down the instantaneous rate of 

change of the amount of drug in the bloodstream at 𝑡𝑡 = 8 without doing any calculations.  
Be sure you can explain why you were able to do this. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



5. An advantage of rapid injection is that the amount of drug in the bloodstream is 
immediately an effective amount; however, a drawback is that repeat injections have to be 
made at carefully calibrated time intervals and amounts to keep an effective amount of 
drug in the bloodstream.  Assuming that the drug is only effective for the patient as long as 
there are 20 mg or more in the bloodstream, after how many hours would the patient need 
a second dose?  If the maximum safe amount of the drug in the body is 35 mg, what should 
the second does be? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



Second type:  Intravenous (IV) Infusion 
With an IV infusion, the amount of drug in the bloodstream starts at zero and increases until 
the rate the drug is entering the body equals the rate the drug is being eliminated from the 
body; at this point, the amount of drug in the bloodstream levels off.  This type of situation can 
be modeled by a limited growth exponential function of the form 

𝐴𝐴(𝑡𝑡) = −
𝑟𝑟
𝑘𝑘

(1 − 𝑒𝑒𝑘𝑘𝑘𝑘) 

where 𝑟𝑟 is the rate of infusion per hour and 𝑘𝑘 is the exponential decay constant of the drug 
(which is the same as it was for the single rapid injection). 
 
Say that we administer the same drug (which still has a half-life of 4 hours) at a constant drip 
rate of 6 mg/hr. 
 
1. Find a model for the amount of drug in the bloodstream 𝑡𝑡 hours after the IV infusion begins.  

Graph the function on the viewing window [0,24] × [0,40] and observe the end behavior. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2. Find the average rate of change of the drug in the bloodstream, with units, for the time 
interval from 𝑡𝑡 = 0 to 𝑡𝑡 = 2, and then again for the time interval from 𝑡𝑡 = 4 to 𝑡𝑡 = 6.  
Make an observation about these rates of change in relation the rates of change you 
calculated for the single rapid injection; use this observation to write down the 
instantaneous rate of change of the IV infusion drug at time 𝑡𝑡 = 4. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
3. An advantage of an IV infusion is that a dose can be given such that the limit of 𝐴𝐴(𝑡𝑡) as 𝑡𝑡 

approaches infinity is an effective level, and once the amount of the drug reaches this level 
it will remain there as long as the infusion continues.  However, it takes a comparatively 
long amount of time for the amount of the drug to reach the desired level.  For this IV 
infusion, how long would it take before the amount of drug in the body was greater than or 
equal to the minimum effective amount of 20 mg? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Challenge 
Can you find a drug administration method that will immediately administer 35 mg of the drug, 
and keep that amount constant? 



PLTL Fall 2021 Calculus 1 Session 7 – Elasticity and Economics 
 
Economists use the term elasticity in relation to supply, demand, income, labor, capital, 
and other variables in systems with input and output.  Basically, elasticity describes how 
changes in the input to a system are related to changes in the output.   
If that sounds familiar, it is because differentiation accomplishes the same task: 
measuring how a small change in the input variable affects change in the output 
variable. 
 
Background Knowledge 
In order to be able to work through this activity, you should be familiar with the 
differentiation shortcut rules you learned in class:  constant, constant multiple, 
sum/difference, power, general exponentials, product, quotient. 
You should also be familiar with the idea that a derivative measures rate of change. 

 
Linear demand 
Normally, as the price of an item increases, the number of sales of that item generally 
decreases.  This relationship is expressed in a demand function 𝐷𝐷(𝑝𝑝) that describes how 
demand depends on price.  
For this example, suppose a gas station has the demand function 𝐷𝐷(𝑝𝑝) = 1200 − 200𝑝𝑝 
for price 𝑝𝑝; the graph is shown here. 
 
 

 
 
 
 



1. According to this model 𝐷𝐷(𝑝𝑝) = 1200 − 200𝑝𝑝, how many gallons of gas can the gas 
station owners expect to sell per month if the price is set at $4 per gallon?  What 
about if the price is $3.50 per gallon?  Which of these price points results in greater 
revenue for the gas station? 
 
 
 
 

 
 
 
 
 
2. Evaluate 𝐷𝐷′(𝑝𝑝) and explain why your answer means that the demand function is 

decreasing.  Why would you expect that demand functions should usually be 
decreasing functions? 
 
 
 

 
 
 
 
 
 
 
3. For the comparison we made in Step 1, call the change in price ∆𝑝𝑝 = 4.00 − 3.50; 

call the resulting change in the number of gallons sold ∆𝐷𝐷, and write down this 
amount.  Now, express your answers in terms of percentages: What is the percent 
change in price ∆𝑝𝑝 𝑝𝑝⁄ , and what is the resulting percent change in the number of 
gallons sold ∆𝐷𝐷 𝐷𝐷⁄ ? 
 
 
 
 
 
 
 
 
 
 



4. The elasticity in the demand, 𝐸𝐸, is the ratio of the percent change in demand to the 
percent change in price: 

𝐸𝐸 =
∆𝐷𝐷 𝐷𝐷⁄
∆𝑝𝑝 𝑝𝑝⁄

 

 
Compute the elasticity for the amounts of change from Step 3. 
 
 
 
 
 
 

 
 
 
The elasticity is simplified by considering only very small changes in 𝑝𝑝 and 𝐷𝐷.  In this 
case, we can apply the definition of the derivative: 
 

𝐸𝐸 = lim
∆𝑝𝑝→0

∆𝐷𝐷 𝐷𝐷⁄
∆𝑝𝑝 𝑝𝑝⁄

= lim
∆𝑝𝑝→0

∆𝐷𝐷
∆𝑝𝑝

 �
𝑝𝑝
𝐷𝐷
� =

𝑑𝑑𝐷𝐷
𝑑𝑑𝑝𝑝

�
𝑝𝑝
𝐷𝐷
� 

 
Prove that elasticity is a function of p only, and for this gas station example find a 
formula for 𝐸𝐸(𝑝𝑝).  Evaluate 𝐸𝐸(3.5) and compare to your answer in Step 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5. The elasticity may be interpreted as: the percent change in the demand that results 
from every one percent change in the price.  For example, if 𝐸𝐸(𝑝𝑝) = −2, a one 
percent increase in price results in a two percent decrease in demand.   
 
For our gas example here, if the price of gasoline is $4.50 and there is a 3.5% 
increase in the price, what is the elasticity and the corresponding percent change in 
the number of gallons of gas sold?  Would this move be profitable for the gas 
station? 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
6. When −∞ < 𝐸𝐸 < −1, the demand is said to be elastic, and when −1 < 𝐸𝐸 < 0, the 

demand is said to be inelastic.  Further, when 𝐸𝐸 = −∞ the demand is perfectly 
elastic, and when 𝐸𝐸 = 0 the demand is perfectly inelastic.  Essential goods such as 
basic food tend to have inelastic demand, but discretionary items such as electronics 
tend to have elastic demands.  Using these examples, explain why you think we use 
the terms elastic and inelastic. 
 
 
 
 
 
 
 
 
 
 
 
 



7. Graph the gasoline demand elasticity function for 0 ≤ 𝑝𝑝 < 6.  For what prices is the 
gasoline demand function elastic?  For what prices is the gasoline demand function 
inelastic?   
 
 
 
 
 
 
 
 
 

 
 
 
 
 
8. As another example, the demand for processed pork in Canada is described by the 

function 𝐷𝐷(𝑝𝑝) = 286 − 20𝑝𝑝.  Graph this demand function, compute the elasticity, 
and graph the elasticity.  For what prices is the demand function elastic?  For what 
prices is the demand function inelastic? 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



General Examples 
1. Show that if 𝑎𝑎 and 𝑏𝑏 are positive real numbers, the general linear demand 

function 𝐷𝐷(𝑝𝑝) = 𝑎𝑎 − 𝑏𝑏𝑝𝑝 has decreasing elasticity for 0 ≤ 𝑝𝑝 < 𝑎𝑎 𝑏𝑏⁄ .  What is true 
about the elasticity when 𝑝𝑝 = 𝑎𝑎 𝑏𝑏⁄ ?   
 
 
 
 
 
 
 
 
 

2. Compute the elasticity for the exponential demand function 𝐷𝐷(𝑝𝑝) = 𝑎𝑎𝑒𝑒−𝑏𝑏𝑝𝑝, 
where 𝑎𝑎 and 𝑏𝑏 are positive real numbers.  For what values of 𝑝𝑝 is the demand 
elastic? Inelastic?  What does that mean?   
 
 
 
 
 
 
 
 
 
 
 

3. Compute the elasticity for the demand function 𝐷𝐷(𝑝𝑝) = 𝑎𝑎 𝑝𝑝𝑏𝑏⁄ , where 𝑎𝑎 and 𝑏𝑏 are 
positive real numbers.  For what values of 𝑝𝑝 is the demand elastic? Inelastic?  
What does that mean? 



PLTL Calculus 1 Session 8 – Enzyme Kinetics 
 
Students should read over the introduction, and then attempt the highlighted parts of the 
activity before the Sunday evening session. 
 
Enzymes are catalysts that facilitate the biochemical reactions that occur within all living 
organisms.  One of the fundamental laws of enzyme kinetics was proposed by Loenor Michaelis 
and Maud Menten in 1913.  The law has been supported through laboratory experiments and 
explained through mathematical modeling; today, Michaelis-Menten kinetics are used in many 
biological models. 
 
An enzyme molecule is designed to “fit” another molecule called a substrate.  The substrate (S) 
and enzyme (E) form an intermediate complex (ES), which then dissociates to form the final 
end-product of the reaction (P) and the original enzyme.  The enzyme can then be re-used.  This 
process is shown in the following diagram. 
 
 

              
 
Background Knowledge 
 

• The rate of change of a function at a point is the derivative of the function there. 
• Functions are increasing when they have positive slope and decreasing when they have 

negative slope.  You can identify where a function is increasing and decreasing by 
finding where the derivative is zero, and then making a sign diagram for the intervals 
determined by those zeroes. 

• Graphing functions requires manipulation of the graphing window so that you can see all 
the graph features, including end behavior. 

 
 
An important question concerns the rate at which product molecules are formed.  Under certain 
assumptions, Michaelis-Menton kinetics relates the rate of production of P to the amount of 
substrate present.  In this project, we will explore these production rates, along with looking at 
how small changes in each variable changes the overall reaction over time.  Let 𝑅𝑅 be the rate of 
production of the final product 𝑃𝑃, and let 𝑠𝑠 be the concentration of the substrate initially present.  
Both 𝑠𝑠 and 𝑃𝑃 are measured in units such as micro-moles 𝜇𝜇M, while 𝑅𝑅 is measured in 𝜇𝜇M/s.   
 
 



The Michaelis-Menton law says that  
 

𝑅𝑅(𝑠𝑠) =
𝑉𝑉𝑠𝑠

𝐾𝐾 + 𝑠𝑠
 , 

 
where 𝑉𝑉 > 0 and 𝐾𝐾 > 0 are constants that are specific to each enzyme. 
 
1. Let 𝐾𝐾 = 5 𝜇𝜇M and 𝑉𝑉 = 10 𝜇𝜇M/s.  Graph 𝑅𝑅 as a function of 𝑠𝑠 on the window 

[0,35] × [0,12].  The graph looks to be increasing; prove that it actually is always increasing, 
using 𝑅𝑅′, for this particular choice of 𝑉𝑉 and 𝐾𝐾. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. What does the function 𝑅𝑅 mean biologically?  As the initial concentration of the substrate 𝑠𝑠 
increases, what is the effect on the production 𝑃𝑃?  (Remember, 𝑃𝑃 is the actual amount of 
product produced, and 𝑅𝑅 is the rate of change of 𝑃𝑃.) 
 
 
 
 
 
 
 
 
 
 



Now let’s interpret the constants 𝑉𝑉 and 𝐾𝐾.   
 

3. Evaluate the limit as 𝑠𝑠 → ∞ of 𝑅𝑅(𝑠𝑠).  Explain why 𝑉𝑉 is the maximum production rate.  Is 
there any value of 𝑠𝑠 for which the production rate equals 𝑉𝑉? 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. How does the shape of the graph of 𝑅𝑅 change if 𝑉𝑉 increases?  How does it change if 𝑉𝑉 
decreases?  
 
 
 
 
 
 
 
 
 
 
 
 

5. The constant 𝐾𝐾 has the same units as 𝑠𝑠.  Evaluate 𝑅𝑅(𝐾𝐾), the rate of production when 𝑠𝑠 = 𝐾𝐾.  
Show that 𝐾𝐾 is the initial enzyme concentration that gives a production rate of 𝑉𝑉/2 (so, half 
the maximum rate). 
 
 
 
 
 
 
 
 
 
 



6. How does the shape of the graph of 𝑅𝑅 change if 𝐾𝐾 increases?  How does it change if 𝐾𝐾 
decreases?  Explain why a small value of 𝐾𝐾 means that the enzyme has a high affinity for the 
substrate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Evaluate 𝑅𝑅′(0), which is the slope of the curve at the origin.  How does the slope change if 
𝐾𝐾 is increased with 𝑉𝑉 fixed?  How does the slope change if 𝑉𝑉 is decreased with 𝐾𝐾 fixed? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



8. Now suppose a particular enzyme obeys Michaelis-Menton kinetics, but we do not know 
the exact values of the parameters 𝑉𝑉 and 𝐾𝐾.  Now suppose that we measure two data 
points:  (𝑠𝑠1,𝑅𝑅1) =(2 𝜇𝜇M, 0.5 𝜇𝜇M/s) and (𝑠𝑠2,𝑅𝑅2) =(5 𝜇𝜇M, 1 𝜇𝜇M/s).  Find values of 𝐾𝐾 and 𝑉𝑉 
that fit this data, and plot the points and the production rate function 𝑅𝑅 in this case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9. Occasionally, the Michaelis-Menton law is graphed with a semilog plot, which means that 
ln(𝑠𝑠) is the variable for the horizontal axis.  Mke a semilog plot of the Michaelis-Menton 
Law with 𝐾𝐾 = 5 𝜇𝜇M and 𝑉𝑉 = 10 𝜇𝜇M/s.  



PLTL Calculus 1 Session 9 – Newton’s Method for Approximating Roots 
 
Students should read through the introduction and attempt the highlighted parts of the activity 
before the live Sunday session with the peer leader. 
 
One of the most important parts of the process of finding maximums and minimums is solving 
equations of the form 𝑔𝑔′(𝑥𝑥) = 0 to find some or all of the critical points of the function 𝑔𝑔(𝑥𝑥).  
 
In this project, we are going to explore a specific numerical method for approximating the roots 
of a function 𝑓𝑓(𝑥𝑥), which is the same as approximating the solutions of an equation of the form 
𝑓𝑓(𝑥𝑥) = 0. 
            
Background Knowledge 

• The derivative 𝑓𝑓′(𝑥𝑥) tells us the slope of the tangent line to the graph of 𝑓𝑓(𝑥𝑥) at any 
point where 𝑓𝑓(𝑥𝑥) is differentiable; so, 𝑓𝑓′(𝑥𝑥0) is the slope of the tangent line to 𝑓𝑓(𝑥𝑥) at 
the point where the 𝑥𝑥-coordinate is 𝑥𝑥0. 
 

• The equation of the tangent line to 𝑓𝑓(𝑥𝑥) at the point (𝑥𝑥0,𝑓𝑓(𝑥𝑥0)) is  
𝑦𝑦 − 𝑓𝑓(𝑥𝑥0) = 𝑓𝑓′(𝑥𝑥0)(𝑥𝑥 − 𝑥𝑥0) 

which can be solved for 𝑦𝑦 and then has the form 
𝑦𝑦 = 𝑓𝑓(𝑥𝑥0) + 𝑓𝑓′(𝑥𝑥0)(𝑥𝑥 − 𝑥𝑥0). 

 
Newton’s Method 
Assume that 𝑟𝑟 is a solution of 𝑓𝑓(𝑥𝑥) = 0, as shown in Figure 1 below, so that 𝑓𝑓(𝑟𝑟) = 0.   
Our goal is to approximate the value of 𝑟𝑟 to any degree of accuracy by obtaining closer and 
closer approximations, starting with the initial approximation 𝑥𝑥0 that is also shown in Figure 1.  
 
To obtain a (hopefully) better approximation to 𝑟𝑟, two steps are carried out: 

• The point 𝑥𝑥1 where the tangent line intersects the 𝑥𝑥-axis is found; this new point is our 
replacement approximation to the value of 𝑟𝑟, as shown in Figure 2 as well. 
 

 
 

Notice that 𝑥𝑥1 is a better approximation to 𝑟𝑟 than 𝑥𝑥0 (in this case, anyway).   



Next, to approve upon the new approximation 𝑥𝑥1, we repeat the two-step process outlined 
above to get the next approximation 𝑥𝑥2 using the tangent line to 𝑓𝑓(𝑥𝑥) at 𝑥𝑥1, as shown in Figure 
3 below.   
Continuing like this, we get a sequence of approximations {𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … } that ideally get 
closer and closer to the root 𝑟𝑟; in general, after 𝑛𝑛 steps, the line tangent to 𝑓𝑓(𝑥𝑥) at 𝑥𝑥𝑛𝑛 is used to 
get the next approximation 𝑥𝑥𝑛𝑛+1 in the sequence (see Figure 4). 

 
 
Let’s derive a specific formula for the new approximation 𝑥𝑥𝑛𝑛+1 based on the previous 
approximation 𝑥𝑥𝑛𝑛: 
 
1. Find the equation of the tangent line to a general function 𝑓𝑓(𝑥𝑥) at the point 𝑥𝑥𝑛𝑛, and solve 

the equation for 𝑦𝑦. 
 
 
 
 
 
 
 
 
 
 
 
 

2. Assuming that the tangent line you just found intersects the 𝑥𝑥-axis at the point 𝑥𝑥𝑛𝑛+1, as in 
Figure 4, verify that  

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 +
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛)

 . 

 
 
 
 
 

 



3. Now we will apply Newton’s Method to find a root of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 5𝑥𝑥 + 1. 
a. Show that Newton’s method takes the form 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑥𝑥𝑛𝑛3 − 5𝑥𝑥𝑛𝑛 + 1

3𝑥𝑥𝑛𝑛 − 5
 

 
 
 
 
 
 
 
 

 
b. Assuming 𝑥𝑥0 = 3, find the values of successive approximations 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 using the 

formula from part (a).  What is your approximation of a root of 𝑓𝑓(𝑥𝑥)? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c. Assuming 𝑥𝑥0 = 1, find the values of successive approximations 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 using the 
formula from part (a).  What is your approximation of a root of 𝑓𝑓(𝑥𝑥) this time?  Look 
at the graph of 𝑓𝑓(𝑥𝑥), and explain why the root is different in case (b) as compared to 
case (a).  
 
 
 
 
 
 
 

 
 
 



4. Now find an approximate solution of 𝑥𝑥3 − cos(𝑥𝑥) = 0 using initial approximation 𝑥𝑥0 = 2, 
iterating Newton’s Method enough times so that successive approximations agree to six 
decimal places. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5. Let 𝑓𝑓(𝑥𝑥) = 0.2𝑥𝑥5 − 𝑥𝑥 + 1. 
a. Use Newton’s Method with 𝑥𝑥0 = −1.5, approximate a solution of 𝑓𝑓(𝑥𝑥) = 0 with six 

decimal places of accuracy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. Why would Newton’s Method fail to home in on a root if our initial approximation is 
𝑥𝑥0 = −1?  It may help to graph 𝑓𝑓(𝑥𝑥) on the window [−3,2] × [−2,5]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6. It is extremely important to make a good choice of the initial approximation 𝑥𝑥0 to the root 
𝑟𝑟; a poorly chosen value of 𝑥𝑥0 can lead to unexpected results.  Consider this graph of 
𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − sin(𝑥𝑥), indicating that there are three roots of 𝑓𝑓(𝑥𝑥): 
 

                                         
You can check that 𝑥𝑥 = 0 is one root, and it looks like the other two roots are near 𝑥𝑥 = 1 
and 𝑥𝑥 = −1. 

a. Suppose we wish to verify that Newton’s Method approximates the known root  
𝑥𝑥 = 0 by using an initial value of 𝑥𝑥0 = 0.49.  Calculate the iterated approximations 
𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … until two consecutive values agree to six decimal places.  What happens 
and why? 
 
 
 
 
 
 
 
 
 
 

b. What happens if we change the starting value to 0.4 instead?  What about 0.6? 



PLTL Calculus 1 Session 10 - Optimization Problems 
 
The goal of this session is to take applied problems seeking extreme values, and then 
use what we have learned about finding maximums and minimums to solve the 
problem. 
 
In each case, we have an objective function, which is the quantity we want to 
optimize, and it is subject to one or more constraints, which are conditions that limit the 
possible values of the variables involved. 
 

 
 
Be very careful about step 6 in the guidelines!  When you find a critical point for the 
objective function, this is not automatically the answer, and you are not done with the 
problem – you have to check that the critical point actually gives you the maximum or 
minimum value that you are looking for.  You wouldn’t want to report a value that gives 
a MINIMUM when you are actually looking for a MAXIMUM! 
 
Also, you want to make sure that once you find a critical point that optimizes the 
objective function, you go back and read the question to determine what form your 
answer should have.  For example, if your critical point measures the length of a 
container, is the question asking about the volume of that container instead? 
 
 
 
 
 
 
 



In order to check whether a critical point gives a relative maximum value for the 
objective function, you can use one of the following Derivative Tests: 
 
 
First Derivative Test 
Assume 𝑓𝑓 is continuous on an interval that contains a critical point 𝑐𝑐, and assume 𝑓𝑓 is 
differentiable on an interval containing 𝑐𝑐, except perhaps at 𝑐𝑐 itself. 
• If 𝑓𝑓′ changes sign from positive to negative as 𝑥𝑥 increases through 𝑐𝑐, then 𝑓𝑓 has a 

local maximum at 𝑐𝑐. 
• If 𝑓𝑓′ changes sign from negative to positive as 𝑥𝑥 increases through 𝑐𝑐, then 𝑓𝑓 has a 

local minimum at 𝑐𝑐. 
• If 𝑓𝑓′ is positive on both sides of 𝑐𝑐 or negative on both sides of 𝑐𝑐, then 𝑓𝑓 has no local 

extreme value at 𝑐𝑐. 
 
Second Derivative Test 
Suppose 𝑓𝑓′′ is continuous on an open interval containing 𝑐𝑐 with 𝑓𝑓′(𝑐𝑐) = 0. 
• If 𝑓𝑓′′(𝑐𝑐) > 0, then 𝑓𝑓 has a local minimum at 𝑐𝑐. 
• If 𝑓𝑓′′(𝑐𝑐) < 0, then 𝑓𝑓 has a local maximum at 𝑐𝑐. 
• If 𝑓𝑓′′(𝑐𝑐) = 0, then the test is inconclusive; 𝑓𝑓 may have a local minimum, a local 

maximum, or neither at 𝑐𝑐. 
 
These two tests identify where a function has a local extreme value, but in many cases 
we want to establish that the function has an absolute extreme value.  If the objective 
function is defined on a closed interval, we can use the Extreme Value Theorem to 
determine if the absolute extreme occurs at a critical point within the interval, or at one 
of the endpoints.  If the objective function is not defined on a closed interval, we can use 
the following theorem: 
 
One Local Extremum Implies Absolute Extremum 
Suppose 𝑓𝑓 is continuous on an interval 𝐼𝐼 that contains exactly one local extremum at 𝑐𝑐. 
• If a local maximum occurs at 𝑐𝑐, then 𝑓𝑓(𝑐𝑐) is the absolute maximum of 𝑓𝑓 on 𝐼𝐼. 
• If a local minimum occurs at 𝑐𝑐, then 𝑓𝑓(𝑐𝑐) is the absolute minimum of 𝑓𝑓 on 𝐼𝐼. 
 
 
 
 
As you work through the optimization problems for today’s activity, be sure to use the 
guidelines and theorems given to you above, keep your work organized and clear, and 
be sure to explain in each case why your answer is correct. 
 
 
 
 



Example 1 
An 8-ft-tall fence runs parallel to the wall of a house at a distance of 5 ft.  Find the length 
of the shortest ladder that extends from the ground over the fence to the house, without 
touching the fence.  Assume the vertical wall of the house is 20 ft high and the 
horizontal ground extends 20 ft from the fence. 
Draw a picture of the situation.  Label the ladder length L, label the distance that the 
ladder goes up the house with b, and label the distance from the base of the fence to 
the bottom of the ladder with x.  What is an equation relating the variables L, b, and x?  
Can you use similar triangles to come up with another equation that relates b and x?  
Talk about the limitations on the possible values of x. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example 2 
Find the radius and height that minimize the amount of material used to make a pop can 
with a volume of 354 cm3, given that the can has double thickness in the top and bottom 
surfaces. 
Draw a picture of the right circular cylinder that represents the pop can.  use r to label 
the radius and h to label the height.  Write down a formula involving r and h that gives 
the Volume of the pop can (which has to be 354 cm3).  Can you write down a formula 
for the amount of materials M we need to use (the surface area of the pop can) using 
the area of the sides, the area of the top of the can, and the area of the bottom of the 
can?  (Hint: if you take the cylindrical side surface of the can and flatten it ou, you get a 
rectangle.  One edge length is the height h of the can, the other side length is the 
circumference of the circle.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example 3 
A window consists of a rectangular pane of glass surmounted by a semicircular pane of 
glass.  If the perimeter of the window is 20 ft., determine the dimensions of the window 
that maximize the total window area. 
Draw a picture of the window.  Label the height of the rectangular portion x, and the 
radius of the semicircle as r.  Write a formula for the perimeter of the window in terms of 
x and r (which is equal to 20 ft.), and write a formula for the total area of the window in 
terms of x and r.  Can you combine the two equations to get a formula for the area of 
the window that is only in terms of r, with x eliminated?  Differentiate this function A(r) 
with respect to r, and find the critical points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example 4 (to be done in the live session) 
An island is 3.5 mi from the nearest point on a straight shoreline; that point is 8 mi from 
a power station.  A utility company plans to lay electrical cable underwater from the 
island to the shore and then underground along the shore to the power station.  Assume 
it costs $2400/mi to lay underwater cable and $1200/mi to lay underground cable.  At 
what point should the underwater cable meet the shore in order to minimize the total 
cost of the project? 



PLTL Calculus 1 - Session 7
Beofre the live PLTL session on Monday, students should read the background material for
each section and attempt the problems that are highlighted.

1. Logs and Exponentials
Scientists often use the following logistic growth function to model population growth:

P (t) =
P0K

P0 + (K − P0)e−r0t

where P0 is the initial population at time t = 0, K is the carrying capacity (the theoretical
upper bound on the total population that the surrounding environment can support), and
r0 is the base growth rate. This figure shows the sigmoid (S-shaped) curve associated with
a typical logistic model.

Example 1
When a reservoir is created by a new dam, P0 = 50 fish are introduced into the reservoir,
which has an estimated carrying capacity of K = 8000 fish. The estimated initial growth
rate is 50%, so r0 = 0.5.

(a) Write down a logistic growth model for this population of fish, and graph the func-
tion on your calculator in an appropriate window that produces the sigmoid curve
on the screen. Explain your process for determining this window - how did you know
how to set the min and max y-values so you can view the entire graph?



(b) Determine how long it takes for the population to reach 5000 fish, and how fast the
population is growing at this time. Then determine how long it takes to reach 90%
of the carrying capacity, and how fast the population is growing at this time as well.

(c) Use a graph of P ′(t) to determine when the population is growing the fastest.



Example 2

The graph of y = xln x has one horizontal tangent line. Find its equation.



2. Inverse Trig Derivatives

Example 3

Find an equation of the tangent line to f(x) = cos−1(x2) at the point where x =
√

2/2.
Don’t forget to use the chain rule!



Example 4
A boat is towed toward a dock by a cable attached to a winch that stands 10 feet above
the water level. Let θ be the angle of elevation of the winch and let ` be the length of the
cable as the boat is towed to the dock.

(a) Show that the rate of change of θ with respect to ` is

dθ

d`
= − 10

`
√
`2 − 100

(b) Calculate the following limit, and explain what happens as the last foot of cable is
reeled in:

lim
`→10+

dθ

d`

(c) From the picture, you can see that θ increases as the boat is towed to the dock. So,
why is dθ/d` negative?



3. General Inverse Derivatives
We want to be able to calculate the rate of change of an inverse function without having
to first find a formula for that inverse. If you look at this graph of a function f(x) and
it’s inverse f−1(x), you can see that inverse function graphs are reflections of each other
across the line y = x because for an inverse we are switching the roles of x and y.

Notice the connection between the slopes at the inverse points (x0, y0) on f(x) and (y0, x0)
on f−1(x): they are reciprocals.

Here’s how to find the slope of an inverse function at a point without finding a formula
for the inverse itself.



Example 5
Use the table to determine the indicated derivatives, or state that they cannot be
determined with the given information.

(a) (f−1)′(4) (c) (f−1)′(6)

(b) (f−1)′(1) (d) (f−1)′(2)

Example 6
If f is a one-to-one function with f(3) = 8 and f ′(3) = 7, find the equation of the tangent
line to y = f−1(x) at x = 8.



Math 125 PLTL 11: L’Hôpital’s Rule 
Remember that if (𝑥𝑥) is continuous at 𝑥𝑥 = 𝑎𝑎, then: 

lim 
𝑥𝑥→𝑎𝑎 

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑎𝑎) 

Example:   lim 
𝑥𝑥→3 

𝑥𝑥2 

 
 
 

Sometimes we don’t even need continuity to determine a limit: 
 

Example: lim 1
 

𝑥𝑥→0+ 𝑥𝑥 
 

Other times, we get stuck on what’s called an “Indeterminate Form”: 

 

Example:  lim 
𝑥𝑥→0 

1−cos 𝑥𝑥 
 

 

𝑥𝑥 

Form: 0/0 

Is this 0, since we approach 0 in the numerator? 

OR: is this ∞, since we approach 0 in the denominator? 

Since it isn’t clear, we call this form INDETERMINATE. 

L’Hôpital’s Rule is a method for dealing with certain indeterminate form 
limits. 

Definition - Indeterminate Form 
An expression involving two components where the limit cannot be 
determined by evaluating the limits of the individual components. 



 
 
 

1. L’Hôpital’s Rule is still valid if 𝑥𝑥 → 𝑎𝑎 is replaced by any of 𝑥𝑥 → 𝑎𝑎+, 
𝑥𝑥 → 𝑎𝑎−, 𝑥𝑥 → ∞, or 𝑥𝑥 → −∞. In the last two of these cases, there 
must be a greatest 𝑥𝑥-value beyond which both 𝑓𝑓 and 𝑔𝑔 are 
differentiable at every point. 

2. If the limit on the right does not exist because it is not a real 
number, ∞, or −∞, this DOES NOT mean that the original limit also 
does not exist. 

 

Back to our example:  lim 
𝑥𝑥→0 

1−cos(𝑥𝑥) 
 

 

𝑥𝑥 

L’Hôpital’s Rule 

Suppose 𝑓𝑓 and 𝑔𝑔 are differentiable functions on an open interval 𝐼𝐼 
containing the point 𝑥𝑥  = 𝑎𝑎, with 𝑔𝑔′  𝑥𝑥 ≠ 0 on 𝐼𝐼 when 𝑥𝑥 ≠ 𝑎𝑎. 

 
 

 
, , or - 

 
   , then 

𝑓𝑓(𝑥𝑥) 𝑓𝑓′(𝑥𝑥) 
lim = lim 

 

provided that the limit on the right exists as a real number, ∞, or −∞. 



Example Evaluate lim 
𝑥𝑥→0+ 

1−ln(𝑥𝑥) 
. 

1+ln(𝑥𝑥) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example  Evaluate  lim 
𝑥𝑥→0 

𝑒𝑒𝑥𝑥−𝑥𝑥−1 
5𝑥𝑥2 . 

 
 
 
 
 
 
 
 
 
 
 
 

L’Hôpital’s Rule only applies directly to the indeterminate  forms 
0 ∞ 
0 

,  
∞ 

∞ 
, or − 

∞
 

 

There are many other indeterminate forms; the idea will be to use a 
combination of algebra techniques and/or limit laws to express them 
as one of the forms eligible for L’Hôpital’s Rule. 

One such indeterminate form is 0 ∙ ∞. We are going to use the facts 
that, as limits, 1/∞ = 0 and 1/0 = ∞ to rewrite this indeterminate 
form as one that will work with L’Hôpital’s Rule. 



 
 − 

Example Evaluate lim 
𝑥𝑥→0+ 

𝑥𝑥 ln(𝑥𝑥) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example  Evaluate   lim  (1 − 𝑥𝑥) tan . 
𝑥𝑥→1 



 

Now we are going to look at exponential indeterminate forms. We 
can walk through the first example together, then state what to do in 
general. 

𝑥𝑥 
Example lim 

𝑥𝑥→∞ 
 
 

Indeterminate Form: 1∞ 

L’Hôpital’s Rule cannot be applied directly to this type of form.  

We can use exp/log/limit properties to rewrite the expression, 

following these steps: 

1. Natural logarithm and natural exponential functions are inverses 
 
 
 
 

2. Power property for log arguments:  ln = 𝑔𝑔(𝑥𝑥) ln 
 
 
 
 
 

3. Exponential functions are continuous 
 

 

 
 

𝑓𝑓(𝑥𝑥) 



 

 
Example  Use L’Hôpital’s Rule to evaluate the limit as x goes to 
infinity of the function 𝑥𝑥tan 𝑥𝑥. 

 

 

 

Assume that 𝐿𝐿 = lim (𝑥𝑥)𝑔𝑔(𝑥𝑥) has one of these indeterminate forms. 
 

1. Use the fact that the natural logarithm and natural exponential 
functions are inverses to write 

2. Use the power property of logarithm arguments to write 
  = lim 

 
 

3. Use continuity of the exponential function to write 
 

 

4. Rewrite multiplication as division by the reciprocal: 

5. Use L’Hôpital’s Rule to evaluate this limit expression. 
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