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Daniel H. Wagner Associates 

• Consulting services in Operations Research, 
Mathematics, and Software Development since 1963 

• Technical staff of 25 includes 12 PhDs in 
mathematical sciences 

• Offices in Exton PA (HQ), Hampton VA and Vienna VA 

• Primary client base – DoD and financial community 

 
 

Daniel H. Wagner Associates, Inc. 
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Daniel H. Wagner Associates 
Daniel H. Wagner Associates, Inc. 

• Missile Defense Agency:  Tracking, Registration, and Data Fusion 

• Air Force:  AWACS Multi-Sensor Fusion; Tracking ground targets  

• Army:  Combat Identification for IBCS 

• Department of Homeland Security (DHS) : Field tested Data Fusion 
systems for the Mexican (ground) and Canadian (water) borders 

• Navy: Torpedo Defense, Data Fusion, Mission Planning, Mine Warfare, 
Submarine Warfare, Unmanned Vehicles 

• NASA: Random Number Generation on GPGPUs  

• Financial Community: Retirement Spending Planner, Mean Variance 
Optimization Library, Statistical Arbitrage, Optimal Coupon selection, 
Portfolio Optimization 
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Decentralized and Autonomous 
 Data Fusion Service (DADFS)  

for Heterogeneous Unmanned Vehicles (UVs) 

Distribution Statement A:  Approved for public release; distribution is unlimited.    
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Daniel H. Wagner Associates 
What is Data Fusion? 

• Analogous to human cognitive process for drawing inferences about the 
real world from five senses: sight, sound, smell, taste, touch 

• Different types of information comes from different sensors (e.g., 
acoustic, electromagnetic, infrared, electro-optical) 

• Need to determine which sensor measurements derive from the same 
real world object 

 
• Ultimate Goal:  

Achieve usable knowledge of your surroundings 
– Common Operational Picture (COP) 
– Situational Awareness (SA) picture  
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1.  Binocular Triangulation 

Sensor Fusion for Improved 
Estimation of Situation 

How do I know whether I can reach the cup? 
Improve Estimation by Combining Multiple Types of Information 

3.  Perspective (assumed target size) 

2.  Elevation Angle (assumed  
     sensor altitude above target) 

4.  Triangulation via Sensor Movement 

3.  Perspective (assumed target size) 

Source:  Alan Steinberg 
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Lots of Objects; 
 Lots of Measurements 
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Challenges to be Addressed 

• Cleaning up clutter (radar returns from ocean waves) 

• Associating Measurements    
– From each sensor (over time) 
– From all sensors on a single platform 
– Across platforms 

• Dealing with uncertainty     
– Kinematic (position/velocity) 
– Non-kinematic (identity) 

• Registration of sensors     
– Aboard a single platform 
– Between platforms 

• Measuring Performance    
– Kinematic Accuracy 
– ID Estimation 
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And More Challenges 

• Optimizing Information Flow between platforms   
– Intermittent Communications 
– Low Bandwidth 

• Maintaining Accurate Picture; Common among platforms 
– Avoiding duplication of information (correlated information) 

• Dealing with Nonlinearities    
– Nonlinear Platform Motion 
– Nonlinear Measurements 
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Multiple Analytical Techniques 

• Stochastic Differential Equations (target motion) 

• Kalman Filtering (and variants for nonlinearities) 

• Measuring Distances between Distributions 

• Bayesian Networks    
– Identity Estimation 
– Behavior Prediction 

• Discrete Optimization (Hungarian Algorithm) 

• Discrete and Continuous Simulation      
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Military Perspective 

• Commanders and Platforms need                 
more accurate, less cluttered, automatically generated 
Common Operational Picture (COP)/ Situational 
Awareness (SA) picture to:    
– Improve the quality of the decisions made 
– Improve the speed at which decisions are made 
– Reduce operator workload 

    

Distribution Statement A:  Approved for public release; distribution is unlimited.    
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Decentralized and Autonomous Data 
Fusion Service (DADFS) for  

Heterogeneous Unmanned Vehicles (UVs) 

Other 
ONFPs Other 

ONFPs

●

●
●

DADFS = Decentralized and Autonomous Data Fusion Service
JDBS = JHU/APL Distributed Blackboard System 
ONFP = Own-Node Fused Picture
SA = Situational Awareness
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Controller
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DADFS for Heterogeneous UVs Data and Process Flow  
on One AMN Type USV (including CARACaS  

and third party Cooperative Autonomy Modules) 

Operational Data & 
Instructions Interface

Router for 
Off-Board Data 

Physical State
Available Resources 
Rules of Operation

Goals

Mission Computer
(e.g., running CARACaS)

Telemetry

Off-Board Control/Data Link

Interface

Payloads

Health Module

Engine

AutoHelm

USV Controls

Interface

Aux Systems

Data 
Recording

Decentralized and Autonomous 
Data Fusion Service (DADFS)

On-Board
Sensors (e.g., 
radar, LIDAR, 
electro-optical,

AIS, sonar)

Inertial 
Navigation 

System (INS) 

Local 
Operating

Area Digital 
Nautical

Chart (DNC) 

Cooperative 
Autonomy 
Modules

AIS = Automatic Identification System
COP = Common Operational Picture
ONFP = Own-Node Fused Picture

Other UVs

ONFP
& AIS

ONFPs & 
AIS from 

other USVs

COP (Object
Localization and 
Classification/ID

Information)  
(in the form of 
system track 
states or a 

60 x 60 2 yd 
grid)
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DADFS APL Unmanned Vehicles and 
Command and Control Stations 

Images are not stored “Google Earth” 
Data but Real-time and Near Real-time 
ISR Data including Automated Target 
Recognition and Multi-Sensor Data 
Fusion 

User interface is an application 
on an existing handheld 
device 

Distribution Statement A:  Approved for public release; distribution is unlimited.    
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OPISR 11 Technical Accomplishments 
Webster Field, 21 – 29 Sep 11 

View from 
Procerus Unicorn 

View from Distributed C2 Display View from Boeing Scan Eagle 

View from  
UGS – via UAV Comms-Chain 

View from 
USV (SKB) 

View from  
Segway UGV 

Distribution Statement A:  Approved for public release; distribution is unlimited.    
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View from  
Procerus Unicorn 

View from Distributed C2 Display View from Boeing Scan Eagle 

View from  
UGS – via UAV Comms-Chain 

View from  
USV (SKB) 

View from  
Segway UGV 

WE BELIEVE THIS IS 
OUR PLATFORM 

THIS SENSOR WAS 
DISTANT AND ONLY 
AVAILABLE VIA 
AIRBORNE LINK 

RED DOT IS AN MLO 
(Mine Line Object) 
DETECTION FROM THE 
UUV RELAYED BY UAV 
LINK TO LAND C2 OUR CHASE BOAT 

FROM THE SE – YOU 
CAN SEE OUR UUV 
CRATE IN BACK 

SE 

SE 
UGV 

ALL OF THIS IMAGERY WAS 
AVAILABLE ON BOTH LAND 
AND WATER C2 DISPLAYS 
DIRECTLY OR AS COMMS 
CHAINS FORMED 

Distribution Statement A:  Approved for public release; distribution is unlimited.    

OPISR 11 Technical Accomplishments 
Webster Field, 21 – 29 Sep 11 
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UUV MLO  
Contacts –> USV –> UAV –> User 

UUV “MLO”  
Detections 

Distribution Statement A:  Approved for public release; distribution is unlimited.    



18 

Daniel H. Wagner Associates 

Primary Mission Benefits 

• More accurate & less cluttered Common Operational Picture 
(COP)/ Situational Awareness (SA) picture 
– Number of objects correct (reduced clutter) 
– Object position and classification correct 
– Provides ad hoc decentralized ISR for multiple users 

 

• Reduced risk 
‒ Timely and accurate alerts concerning potential threats 

 

• Significantly reduced decision timelines 
 

• Better utilization of scarce resources 
– Operators 
– Platforms and sensors 
– Bandwidth 

 

• Highly automated 
‒ Reduced operator workload 
 Higher Mission Success Rate Using Fewer Resources 

Distribution Statement A:  Approved for public release; distribution is unlimited.    
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Multiple Analytical Techniques 

• Stochastic Differential Equations (target motion) 

• Kalman Filtering (and variants for nonlinearities) 

• Measuring Distances between Distributions 

• Bayesian Networks    
– Identity Estimation 
– Behavior Prediction 

• Discrete Optimization (Hungarian Algorithm) 

• Discrete and Continuous Simulation      
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A commonly used SDE in target tracking is the Integrated 
Ornstein Uhlenbeck (IOU) Motion Model 
 
 dX = Vdt 
 dV = -βVdt + σ dWt 
 
Where X is 1, 2 or 3-D position, V is the corresponding 
velocity and dWt is the Weiner differential. 
 
 

Stochastic Differential Equation 
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Multiple Analytical Techniques 

• Stochastic Differential Equations (target motion) 

• Kalman Filtering (and variants for nonlinearities) 

• Measuring Distances between Distributions 

• Bayesian Networks    
– Identity Estimation 
– Behavior Prediction 

• Discrete Optimization (Hungarian Algorithm) 

• Discrete and Continuous Simulation      
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Data Association – Problem Definition 

• Assume database has a set of tracks 

• Ready to process new set of observations (e.g., one 
radar scan, one GMTI Frame) 

• Which observations are from same target? 

• Which are clutter/false alarms/noise? 
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Tracks at time T Predicted 
Locations 

Data Association – Example 

Four New 
Observations 
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• Classical assignment problem 
– Workers to jobs, frequencies to telecommunication firms, etc. 

• Assigning Observations to Tracks 
• Entries in assignment matrix are “distances” dij 

 
o
b
s
1

o
b
s
2

o
b
s
3

o
b
s
4

Track 1
Track 2
Track 3

12 x 7
9 8
6

12
x

x
x x8

Data Association 
The Assignment Problem 
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• Optimal Solution: Set of pairings (i,j) such that Σdij is 
minimized 

• Suboptimal Solution: Nearest Neighbor Association 

– Find minimum distance observation-to-track pair and make the 
indicated assignment (Greedy Algorithm) 

• Optimal Solution Methods:  
 Munkres Algorithm 
 Ford-Fulkerson Algorithm 
 Hungarian Algorithm 
 Auction Algorithm 
 

Data Association 
The Assignment Problem 
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• Need to account for 
(1) Tracks which may not have an observation 

(Probability of detection < 1) 
(2) Observations not associating with any track 

(Probability of new track/false alarm) 

• Add a “not detected” column to association matrix for (1) 

• Add a “false alarm” row to association matrix for (2) 

• Question:  What do we use for a “distance” in the entries 
of the association matrix? 

Data Association – PD & FAR 



29 

Daniel H. Wagner Associates 

Data Association 

NT FA
2
ij D

M / 2 1/ 2

D

ln( ) observation is false alarm/new target
d Pcost ln observation to track
2 (2 ) | S |
ln(1 P ) no observation to track

− β + β


 = −  π 
− −

(dij)2 =  Mahalanobis distance between track i and observation j 

βNT = probability of observing a new target per incremental area (NT density) 

βFA = probability of observing a false alarm per incremental area (FA density) 

PD = probability of detecting target 

M = dimension of observation space 

S =  residual covariance (HPHT+R) 

Actual Association Cost (distance) used in most tracking applications 
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Where does this association “cost” come from? 
 

Data Association 
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Association Likelihood 

• Association Likelihood – a relative measure of how likely it 
is observation ‘z’ came from (should be associated with) 
track ‘j’ 

• L(obs = z | track j), which is read the likelihood of observing 
the value z given that (or under the hypothesis that) track j 
produced this observation 
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Distribution of heights for male and female adults in the 
United States is approximately normal.  In inches, the two 
pdfs are: 

pM(x) ~ N(x, 69.1, 2.9)                    pF(x) ~ N(x, 63.7, 2.7) 

Association Likelihood 
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Given that we are told a person (U.S. adult) is 65 inches 
tall, is it more likely that they are male or female? 
To answer this question we evaluate each density function 
at this point observation. 
 L(obs=65 | Male)       = pM(65) = 0.051 

L(obs=65 | Female ) = pF(65) = 0.131 

Conclusion: It is roughly two and a half times as 
likely that this observation (the height) was from 
the female population as from the male population. 
 

Association Likelihood 
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Let’s add errors! 
Assume that the observed height may be off by up to an inch.   
The observed height will be correct with probability 0.5 and equally likely 
to be off by an inch plus or minus.   
Now given that the observed height was 67 inches, the likelihood that the 
observed adult is from the male population is given by the weighted 
average of the density values. 

L (obs=67 | Male) = Pr (obs=67 | true=66)*pM(66) +  
  Pr (obs=67 | true=67)*pM(67) + 
  Pr (obs=67 | true=68)*pM(68)  
 = 0.25 * (0.078) + 0.5 * (0.106) + 0.25 * (0.128) 
 = 0.1045 
 
L (obs=67 | Female) = 0.071 

Association Likelihood 
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Now suppose the error in our observation is continuous, not discrete. 
The error is described by a probability density function pe( ), having 
mean zero. 
Now the “weighted average” needs to be calculated over all possible 
states and so the sum becomes ???   
 
 

( )

( )

M

e

L (obs=67 | Male) = Pr (obs=67 | )p   , with

Pr (obs=67 | ) = p 67

x x dx

x x

∞

−∞

−

∫

Association Likelihood 
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Back to our height example:  Suppose the error distribution is 
normally distributed with mean 0 and standard deviation 0.25 
inches.  If the observed height is 67.3, what are the likelihoods for 
the different populations? 
 

( )

( ) ( ) ( ) ( )

M

2 2( 67.3) ( 69.1)
2 22 0.25 2 2.91 1

2 (0.25) 2 (2.9)

L (obs=67.3 | Male) = Pr (obs=67.3 | )p

=
x x

x x dx

dxe eπ π

∞

−∞

− − − −
∞

−∞

∫

∫

Association Likelihood 
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The integral looks very messy, but we are lucky because there is a nice 
closed form solution! 
In general, if p1(x) ~ N{x: µ1, σ1} and p2(x) ~ N{x: µ2, σ2} then the 
integral of the product of the density functions is the value of the density 
function having mean 0 and standard deviation                             evaluated 
at the difference of the means µ1- µ2 .  

2 2
1 2σ σ σ= +

( )
1 2

2( )
221

1 2 2 ( )( ) ( )p x p x dx e
µ µ

σ
π σ

− −∞

−∞

=∫

Association Likelihood 
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The likelihoods for the two populations are: 

( )
2(67.3 69.1)

22(2.91)1
2 (2.91)L (obs=67.3 | Male) = 0.113eπ

− −

=

( )
2(67.3 63.7)

22(2.71)1
2 (2.71)L (obs=67.3 | Female) = 0.061eπ

− −

=

Association Likelihood 



Time left for more detail? 
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For the Gaussian Tracking problem the association likelihood is 

T

where 
Z is the new observation,
H is the observation matrix,
X is the extrapolated state,
and S is the residual error covariance
S H P H R  .= +





( ) ( )T 1

1
2

21

2

−− − − Z HX S Z HX

S
e

π

Association Likelihood 
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Now consider the likelihood of a hypothesis, where the hypothesis consists of 
a set of tracks that are associated with new observations, a set of tracks that 
were not detected (did not associate with a new observation) and a set of 
unassociated observations (new targets or false alarms).  For example, given 
three tracks in the database, T1, T2, T3 and four new observations, O1, O2, 
O3, O4, one association hypothesis is:  {T1<->O2; T2 undetected; T3<->O4; 
O1 unassoc; O3 unassoc} 
 
To accurately represent this combined event, three additional factors are 
required:  
1) PD – the sensor’s probability of detection 
2) βNT – the probability density for new tracks (previously undetected target) 
3) βFA – the probability density for false alarms (or sensor noise) 
 
 

Association Likelihood 
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The likelihood for the hypothesis is simply the product of the likelihoods 
for each of the three types of events within the hypothesis: 
 
1)  track-to-observation association  : PD * assoc_likelihood 
2)  track with no observation : (1-PD) 
3)  unassociated observation : βFA + βNT 

 
where the assoc_likelihood term in the first case is the total likelihood 
described previously. 

 

Association Likelihood 
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• The best hypothesis is the one that is the most likely, i.e. the 
maximum likelihood hypothesis.  In order to cast the problem in a 
more tractable form, the calculations are done in negative natural 
logarithm space.   

• We refer to the negative logarithm of the association likelihood as an 
association cost.  Thus, the goal of maximizing the likelihood  
becomes one of minimizing the cost.   

• Finally, note that all of the products that are inherent in working with 
likelihoods become sums in “cost space”. 

• When we convert the likelihoods shown in the previous slide into 
costs, we obtain the following slide. 

 

Association Likelihood 
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NT FA
2
ij D

1/ 2

D

ln( ) observation is false alarm/new target
d Pcost ln observation to track
2 | 2 S |
ln(1 P ) no observation to track

− β + β


 = −  π 
− −

(dij)2 = Mahalanobis distance between track i and observation j 

βNT = probability of observing a new target per incremental area (NT density) 

βFA = probability of observing a false alarm per incremental area (FA density) 

PD = probability of detecting target 

S = residual covariance (HPHT+R) 

Actual Association Cost used in most tracking applications 

Data Association (Repeat) 



Discrete Example of 
Association Calculation 
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• Suppose we have two targets, each with a probability distribution on ID 
• Discrete Random Variable is X 
• Three possible values - HOS, NEU, FRI 
• Distribution on X is maintained as a table (one-D array) 

 
  Target 1         Target 2 
    X  p1(X)    X p2(X) 
 HOS   0.4 HOS  0.8 
 NEU   0.4 NEU  0.1 
 FRI   0.2 FRI  0.1 
 
    

Military Example with discrete population distributions 
and discrete observation conditional probabilities 

Association Likelihood 
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• Observation ‘A’ is detection of certain RF emitter 
– 10% of Hostile targets carry this emitter 
– 80% of Neutral targets carry this emitter 
– 30% of Friendly targets carry this emitter 

 
• This is a description of the observation likelihood function 
 Pr (obs=‘A’ | X=HOS)  = 0.1 
 Pr (obs=‘A’ | X=NEU) = 0.8 
 Pr (obs=‘A’ | X=FRI)   = 0.3 

Association Likelihood 
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i
x

L (obs='A' | Target i) Pr (obs='A' | X = x) p (x)= ∑ 

L (obs=‘A’ | Target 1) = (0.4)(0.1)+(0.4)(0.8)+(0.2)(0.3) 
 =  0.42 
 
L (obs=‘A’ | Target 2) = (0.8)(0.1)+(0.1)(0.8)+(0.1)(0.3) 
 =  0.2 
 
Conclusion: The emitter observation is slightly more 
than twice as likely to have come from Target 1 as from 
Target 2. 
 
 

Association Likelihood 
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