Hello!

About Nigel!

➔ **Pittsburgher**
 Grew up south of Pittsburgh in California, PA. Parents are fans of British Rock!

➔ **Breaking Computers Since 1989**
 The best way to fix something is to break it first!

➔ **Working on Robot Cars!**
 Previous roles involved creating product lines for Automated Rail Signaling
Agenda

Hour 1

- Cyber Security in Industrial Systems
- System Analysis 101
- Examples of System Exploits
- Identifying & dealing with Risks & Vulnerabilities
- Speed Reading with Program Management Techniques

<10 Minute BREAK>

Hour 2

- Exercise & Group Work
 - Overview of an example of Theoretical Airport Security System Design by generating set of Risks
 - Group Exercise
 - Group Review of Exercise
How are you feeling today?
Agenda:

Cyber Security in Industrial Systems
System Analysis 101
Examples of System Exploits
Identifying & dealing with Risks & Vulnerabilities
Speed Reading with Program Management Techniques
What is an industrial system?
Knowledge of Industrial Systems?

Extremely knowledgeable

Neutral

Not knowledgeable at all
Industrial Control System (def)

Industrial control system (ICS) is a collective term used to describe different types of control systems and associated instrumentation, which include the devices, systems, networks, and controls used to operate and/or automate industrial processes.
Industrial Control System (def)

Made up of many items, each with its own design life, update cycle, and iterations.

Used by highly skilled and non skilled technicians.

Low -> No Tolerance for Failures
< 3.5 minutes frequency
What type of cyber security risks would be present in this system?

Networking
Misuse
Unintended design
Malware
Zero-day exploit
Man in the middle
It depends
Systems Engineering

Systems engineering is an interdisciplinary field of engineering and engineering management that focuses on how to design and manage complex systems over their life cycles.
What is vulnerable in this diagram?
Agenda;

Cyber Security in Industrial Systems
System Analysis 101
Examples of System Exploits
Identifying & dealing with Risks & Vulnerabilities
Speed Reading with Program Management Techniques
Decomposing a System

Inputs:
- Coal
- Air
- Limestone
- Cooling water

Coal-fired power plant

Outputs:
- Electricity
- Flue gas (with CO2)
- Gypsum
- Fly ash, bottom ash
- Cooling water
What is this System?
Agenda:

Cyber Security in Industrial Systems
System Analysis 101
Examples of System Exploits
Identifying & dealing with Risks & Vulnerabilities
Speed Reading with Program Management Techniques
Malicious actors vs. Bad Design
Stuxnet

→ Stuxnet is a malicious computer worm, first uncovered in 2010

→ Targets SCADA systems and is believed to be responsible for causing substantial damage to Iran's nuclear program.

→ Although neither country has openly admitted responsibility, the worm is widely understood to be a jointly built American/Israeli cyberweapon.
How did STUXNET get in?

1. infection
STUXNET enters a system via a USB stick and proceeds to infect all machines running Microsoft Windows. By pretending to be a digital certificate that seems to show that it comes from a reputable company, the worm is able to evade automated-detection systems.

2. search
STUXNET then checks whether a given machine is part of the targeted industrial control system made by Siemens. Such systems are deployed in Iran to run high-speed centrifuges that help to enrich nuclear fuel.

3. update
If the system isn’t a target, STUXNET deletes its files. If it is, the worm attempts to access the Internet and download a more recent version of itself.

4. compromise
The worm then compromises the target system’s logic controllers, exploiting “zero day” vulnerabilities that haven’t been identified by security experts.

5. control
In the beginning, STUXNET spies on the operations of the targeted system. Then it uses the information it has gathered to take control of the centrifuges, making them spin themselves to failure.

6. deceive and destroy
Meanwhile, it provides false feedback to outside controllers, ensuring that they won’t know what’s going wrong until it’s too late to do anything about it.
A COMPUTER VIRUS

STUXNET

STUXNET
2003 Cascading Blackout

→ The Northeast blackout of 2003 power outage through United States, and the Canadian

→ August 14–28, 2003, beginning just after 4:10 p.m. EDT. Some power was restored by 11 p.m.

→ Most did not get their power back until two days later. In other areas, it took nearly a week or two for power to be restored.

→ At the time, it was the world's second most widespread blackout in history,
2003 Blackout
What would be your first response?
Tesla Lane Monitoring

→ Tesla Model S comes with Advanced Lane Assistance Systems with their 2014 release.

→ Uses the front facing cameras and computer vision system to recognize the lanes.

→ The system beeps and the steering wheel vibrate, alerting the driver of an unintended lane change.
How do we design against adversarial use?
Agenda:

Cyber Security in Industrial Systems
System Analysis 101
Examples of System Exploits
Identifying & dealing with Risks & Vulnerabilities
Speed Reading with Program Management Techniques
As an engineer you need to embrace risk based thinking!

Focus your efforts on those that are most needed!
International Space Station
Probability of No Impacts From a > 1 cm Ø Debris

Impact Risk

Low

High
Everyday elements can be misused, have exploits and present vulnerabilities!
What is this?
What types of screwdriver misuse can you think of?
Risk: Design Misuse!
Marketplace Misuse!
Agenda:

Cyber Security in Industrial Systems
System Analysis 101
Examples of System Exploits
Identifying & dealing with Risks & Vulnerabilities
Speed Reading with Program Management Techniques
Examples of Project's you've worked on?
Program Management 101
What is a project?
What is a project?

- Large body of work with specific deliverables
- Constraints driven
 Basic; Time, Quality, Cost
 6 (+ Risk, Opportunity, Scope)
- Collection of stakeholders
Like it or not, you have all worked on a project in your life?
Waterfall vs. Agile Project Methods

Waterfall
- Requirements
- Design
- Development
- Testing
- Deployment

Big outcome at end

Agile
- Test
- Design
- Deploy

Cumulative outcomes
Not all projects are equal!

Some are sprints, some are marathons. The *constraints* will inform your management approach.
What methodology would you use?

Project:
Create a calorie tracking app for seniors

Constraints;
Duration: 9 Weeks
Budget: $1,000
Quality: 1 Demo with Investors
Which Methodology PT 1

- Waterfall
- Agile
What methodology would you use?

Project:
Upgrade existing steel chemistry reporting system

Constraints;
Duration: 15 Weeks
Budget: $100,000
Quality: 0 Missed Reports for initial production run (100 coils of steel)
Which Methodology PT 2

Agile

Waterfall
Kanban

Kanban (看板) (signboard or billboard in Japanese) is a scheduling system for lean manufacturing and just-in-time manufacturing (JIT). Taiichi Ohno, an industrial engineer at Toyota, developed kanban to improve manufacturing efficiency. Kanban is one method to achieve JIT. The system takes its name from the cards that track production within a factory.

Kanban became an effective tool to support running a production system as a whole, and an excellent way to promote improvement. Problem areas are highlighted by measuring lead time and cycle time of the full process and process steps. One of the main benefits of kanban is to establish an upper limit to *work in process* inventory to avoid overcapacity.
Simplified Kanban Board
Kanban & you
Agenda

Hour 1

- Cyber Security in Industrial Systems
- System Analysis 101
- Examples of System Exploits
- Identifying & dealing with Risks & Vulnerabilities
- Speed Reading with Program Management Techniques

<10 Minute BREAK>

Hour 2

- Exercise & Group Work
 - Overview of an example of Theoretical Airport Security System Design by generating set of Risks
 - Group Exercise
 - Group Review of Exercise
Airport Control System - System Decomp
Airport Control System - Risk Generation

1. Identify the risk factors
2. Who can be harmed and how
3. Evaluate the risks
4. Record your findings
5. Monitor & review

Management Standards
Airport Control System - Kanban Risk Priority

<table>
<thead>
<tr>
<th>Stories</th>
<th>To do</th>
<th>In progress</th>
<th>Test</th>
<th>Done</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Kanban board diagram](image-url)
Airport Control System - Kanban Risk Mitigations
Additional Reading - **Tools of a Systems Thinker**

Tools of a System Thinker

<table>
<thead>
<tr>
<th>Disconnection</th>
<th>Interconnectedness</th>
<th>Linear</th>
<th>Circular</th>
<th>Silos</th>
<th>Emergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parts</td>
<td>wholes</td>
<td>analysis</td>
<td>synthesis</td>
<td>isolation</td>
<td>relationships</td>
</tr>
</tbody>
</table>