
NeXUS: Practical and Secure Access
Control on Untrusted Storage Platforms
using Client-side SGX

Adam J. Lee

Associate Dean for Academic Programs

Associate Professor of Computer Science

School of Computing and Information

University of Pittsburgh

30 October 2018

Economic, management benefits have motivated a transition

to cloud storage

But what happens to access controls when we don’t trust

the provider?

If we don't trust the
storage provider,

who plays the
reference monitor?

Cryptography can be used to enable secure file sharing

Kf kb

Kf

kc

Kf

Kf kb

Kf

Kf kc

Kf

<kb, kb
-1>

<kc, kc
-1>

Kf’ kb

Kf’

Kf’ kb

Kf’

The complexities highlighted in the strawman construction are

amplified in more realistic systems

IEEE S&P 2016

Using a hybrid IBE/IBS construction to enforce

RBAC policies is non-trivial…

Revocations incur enormous costs, even in settings that are

only mildly dynamic

Tens to thousands of IBE encryptions
to revoke a user from a role

Even when only 10% of admin
operations are revocations, much
system time is spent managing key
distributions

What are we to do?

Sources of revocation overheads

 Download, decrypt, re-encrypt, and upload of impacted file(s)

 Redistribution of new keys

Observation: All of this happens because access to the file

implies observation of the key used to encrypt it

What if we could broker access to files without revealing keys?

Our recent work seeks to improve this state of affairs by

combining cryptography and trusted hardware

SGX is a set of ISA extensions in recent Intel processors

that enables secure execution environments

A key feature enabled by SGX is isolated execution

An enclave encodes the trusted portion of an untrusted application

 Hardware protected confidentiality and integrity for code and data

 Enclave are permitted to access application memory

 Applications cannot access

enclave memory

Enclaves are even protected from

a malicious OS/Hypervisor

Caveat: Isolated execution alone

is not terribly useful

https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html

Two other features extend the utility of SGX

protections to a wide class of applications

Sealed storage allows for the long-term storage of enclave-

resident information

Local and remote attestation allow processes to ensure the

authenticity of the enclaves that they rely on

SGXSEAL(<data>, esk)

?

NeXUS leverages SGX to enforce users’ access controls

on untrusted storage platforms

Cloud storage providers already allow rich access controls

Our goal is to enforce these types of access controls, even when

the storage platform is untrusted or compromised

NeXUS was built with two key design goals in mind

 Portability: Seamless integration with existing

storage providers and services

 Practicality: The use of NeXUS should not

negatively impact common user workflows

Deployment without server-side support

Minimal changes to UX

Threat Model

SGX hardware functions properly

Attacker has complete control of the
storage provider, including OS/hypervisorDolev-Yao style network adversary:

delete, modify, reorder, replay of traffic

May attempt to read/modify any file.

Security Objective: Unless granted explicit access by the owner,

the contents of files and directories (i.e., file names) must remain

confidential and tamper-evident.

NeXUS combines the cryptographic techniques used in our straw-

man solution with SGX security guarantees

O
S

O
S

API API

NeXUS combines the cryptographic techniques used in our straw-

man solution with SGX security guarantees

NeXUS

O
S

NeXUS

O
S

API API

NeXUS combines the cryptographic techniques used in our straw-

man solution with SGX security guarantees

NeXUS

O
S

SGX feature utilization

 Encryption takes place in enclave to protect keys (isolated execution)

 Enclave state protected on local disk via enclave-derived keys (sealed storage)

NeXUS

O
S

API API

NeXUS combines the cryptographic techniques used in our straw-

man solution with SGX security guarantees

NeXUS

O
S

SGX feature utilization

 Encryption takes place in enclave to protect keys (isolated execution)

 Enclave state protected on local disk via enclave-derived keys (sealed storage)

NeXUS

O
S

API API

NeXUS combines the cryptographic techniques used in our straw-

man solution with SGX security guarantees

NeXUS

O
S

SGX feature utilization

 Encryption takes place in enclave to protect keys (isolated execution)

 Enclave state protected on local disk via enclave-derived keys (sealed storage)

NeXUS

O
S

API API

NeXUS combines the cryptographic techniques used in our straw-

man solution with SGX security guarantees

NeXUS

O
S

SGX feature utilization

 Encryption takes place in enclave to protect keys (isolated execution)

 Enclave state protected on local disk via enclave-derived keys (sealed storage)

 Authorization and key exchange across machines (remote attestation)

NeXUS

O
S

API API

Why this design?

This design facilitates easy deployment for user-centric workloads

 No server-side modifications necessary

 No global namespace needed for file sharing

 Minimal administrative changes to existing file management

Getting this right involves a lot of moving parts

 Maintaining the metadata to support a filesystem within a filesystem

 Synchronization/consistency issues due to distributed enforcement

 Optimized communication between applications, kernel, and enclave

 Remote attestation with potentially offline partners

 …

I’ll focus on the structure/management of a NeXUS volume and

a brief performance evaluation of our prototype

NeXUS: A stackable virtual filesystem

Intercept filesystem calls

NeXUS: A stackable virtual filesystem

Intercept filesystem calls

Plaintext path is translated
into opaque path

Metadata fetch/decode

File blocks fetched from remote storage

NeXUS stores sensitive filesystem data using metadata

that reflects standard filesystem structures

Key data structures:

 Supernode: Stores filesystem info, including usertable

 Dirnode: Stores directory entries; maps filenames to UUIDs

 Filenode: Stores file chunk encryption keys

Integrity protected

Encrypted
Key material

How is metadata recovered?

Example: Mounting a NeXUS volume

 Load sealed rootkey (rk) from local disk

 Use the local enclave sealing key (eski) to decrypt

Note: Neither eski or rk ever leave the enclave!

 Use rk to decrypt the cryptographic context

Context = ENC(mek, rk)

mek = random metadata encryption key

 Use mek to decrypt and validate supernode

This process works similarly for all other metadata structures

NeXUS Enclave i

• Enclave sealing key: eski

• Volume rootkey: rk

Disk

• SGXSEAL(rk, eski)

File access example: $/bar/cake.c

Recover root dirnode

Find dirnode UUID
corresponding to ‘bar’

Separate keys for chunks
within a file. WHY?

Locate filenode pointing to the
contents of cake.c

Download encrypted contents of
n44da2 (i.e., cake.c)

I’ve glossed over some important details…

How do we figure out who is accessing a volume?

To mount a NeXUS volume, the user must provide

 The volume’s (encrypted) supernode

 A sealed rootkey for the volume

 Their public key

The NeXUS enclave carries out a challenge/response to authenticate

the user via proof-of-possession of their private key

If the user successfully authenticates and is listed in the supernode,

the NeXUS enclave mounts the volume

Bound to their CPU

That works for the volume, but what about access

control to individual files?

NeXUS has an ACL-based scheme for directory-level access controls

 Richer access control models are future work

The NeXUS enclave acts as a distributed reference monitor

 Every access must flow through the enclave (keys never leave!)

 Keys only used to decrypt files iff the authenticated user is authorized

Contains (public key, UID) mappings Contains (UID, permission) mappings

We’ve integrated NeXUS with OpenAFS

Why OpenAFS? It’s used at Pitt to offer networked storage to faculty,

staff, and students!

Our implementation modifies the OpenAFS client and provides an

administrative console for managing volumes and access controls

Implementation

 Total size: ~22k SLOC (excluding MbedTLS and keywrapping libraries)

 Shimlayer to interface with AFS: ~3200 SLOC

 Enclave size: ~9900 SLOC

Important: No modifications were made to

the OpenAFS server!

We compared NeXUS over AFS to a stock AFS install

Microbenchmarks identify metadata I/O as a potential bottleneck

Enclave overhead is small
in both I/O and directory

benchmarks

Larger directories incur
significant overheads from

Metadata I/O

We compared NeXUS over AFS to a stock AFS install

Database benchmarks show high performance for asynchronous

operations, and expected delays for synchronous operations

Full propagation to disk involves waiting on
sequential writes to metadata (i.e., fileboxes)

and the data itself (i.e., file objects)

We compared NeXUS over AFS to a stock AFS install

In cloning git repositories, our overheads are impacted by

metadata complexity

Deep directory trees and lots of files per
directory means lots of dirnode and filebox

operations

We compared NeXUS over AFS to a stock AFS install

Standard linux utilities run with acceptable overheads

Overheads are largely a function of directory complexity

What about the overheads of revocation?

Recall: Revocation in a purely cryptographic system is expensive!

 Download, decrypt, re-encrypt, upload, key distribution

Example: In LFSD, we’re looking at 3.2 GB to shuffle around

Because keys in NeXUS never leave the enclave, life is simpler

 In LFSD, we’re looking at modification of about ~3KB of metadata

Conclusions

Securing data stored in the cloud is of increasing importance

Revocation incurs high overheads in purely-cryptographic approaches

NeXUS combines client-side cryptography and trusted hardware

 Designed to balance portability and practicality

 Distributed access control via client-side SGX enclaves

 No server-side support necessary for deployment

 Key containment enables low-cost revocation

Reasonable overheads for a variety of workloads

Future work

 Increased throughput via server-side support

 Richer access controls

