(&) University of Pittsburgh

St)
'''''''

NeXUS: Practical and Secure Access '
Control on Untrusted Storage Platforms {#
using Client-side SGX i

Adam J. Lee

Associate Dean for Academic Programs
Associate Professor of Computer Science
School of Computing and Information
University of Pittsburgh

30 October 2018

—

R S
-

Economic, management benefits have motivated a transition
i to cloud storage

amazon cloud drive
'-) Google Cloud Platform
& OneDrlve
‘C)_l iCloud
> O ¢
«,* Dropbox
& Google Drive

flickr

But what happens to access controls when we don’t trust
the provider?

—

If we don't trus dé

storage provi

who plays the “

reference monitor?

gam EEE o E— S e S S S S

S IR

<kb, kb'1>

<k, k. >

The complexities highlighted in the strawman construction are
amplified in more realistic systems

On the Practicality of Cryptographically Enforcing
Dynamic Access Control Policies in the Cloud

William C. Garrison 11
University of Pittsburgh

Adam Shull
Indiana University

Am—mmmmmmmm
controls on clowd-hosted data while simulianecusly ensuring
euﬁthlhil}mlilupdhlh“llﬂlhlthrpl

jperform robust and private seeess comtrol on entrusied doud
providers. However, the vast majority of this work studies static
models in which the access control policies being enforced do net
dnlpmrm.mllmmhhudst-mpnmd
applications, which leverage

mecent techniques developed by the aocess comtrol (1]
experimentally analyze, via simula asocialed compu-
costs. This amalysis L3l

in even mini; ic, realistic
scemarios. We idenfify & number of bottlenecks in snch systems,
and fruitful areas for futore work that will lead to more natural
and efficient constructions for the cryplographic enforcement of

‘acess controls. Our indings naturally exiend to the nse
«of more ex pressive primitives {e.z. HIBE or ABE)
and richer sccess control models (e, RBAC, or ABACK

L INTRODUCTION

In recent years, numerous cryptographic schemes have been
developed to support socess control on the (untrusted) c:loud.
One of the most ive of these is attribute-basad
(ABE) [31], which is 2 natural fit for enforcing mime-hmd
access controd (ABAC) policies [40]. However, the practical
implications of using these types of cryptographic schemes to
tackle realistic access control problems are largely onexploned.
In particular, much of the literature concerns static scenarios
in which data andfor access comtrol policies am rarely, if
ever, modified (e.g.. [5], [30], [31]. [42], [49]. [52]. [59].
Such scenarios are not representative of real-world systems,
and oversimplify issues associaed with key management and

o that can carmy ial practical overheads. In this
paper, we explor exaaly these types of issues in an attempt
ito understand the computational overheads of using advanced
ry ptographic techniques to enforce dynamic access controls

Adam I. Les
University of Pittsburgh

Steven Myers
Indiana University

ower objects stored on untrusied platforms. Our primary result
is megative: we demonstrate that prohibitive computational
burdens am likely to be incurred when supporting practical,
dynamic workloads.

The push to develop and use cryptography o support adaptive
access control on the cloud is natural. Major cloud providers
such as Google, Microsoft, Apple, and Amazon are providing
both large-scale, industrial services and smaller-scale, consumer
services. Similarly, there am a number of user-focused cloud-
based file sharing services, such as Dropbox, Box, and Flicke.
However, the near-constant media coverage of data breaches
has raisad both and entarprisa g the
privacy and integrity of cloud-stored data. Amanglhe wndely
publicized stories of external hacking and data disclosum
are releases of private photos [56). Some are even state-
sponsored attacks against cloud organizstions themselves, such
as Operation Aurora, in which Chinese hackers infilirated
providers like Google, Yahoo, and Rackspace [20], [51].
Despite the economic benefits and ease-of-use provided by
outsourcing data management to the cloud, this practice raises
new guestions regarding the maintenance and enforcement of
the access controls that users have come to expect from file
sharing systems.

Although advanced cryptographic primitives seem well-
smtid for protecting poeinr sares in many access control

supporting the r irions between profection states
that ame triggered by administrative actions in a dynamic
sysiem mquires addressing very subtle issuwes involving key
coordination, and keyfpolicy consi - Whilk
ther has been some work seeking to provide a lewel of
dynamism for thess types of advanced cryptographic primitives,
this work is not without issues. For instance. techniques have
been developed to support key revocation [3] and delegated
re-ancryption [32], [58] Unfortunately, these techniques am not
compatible with hybrid encry ption—which is necessary from
an efficiency perspective—umder masonable threat models.

In this paper, we attempt to tease out these types of critical
details by exploring the cryptographic enforcement of a widely-
deployed access control model: role-based access control
(specifically, REACo [61]) In particular. we develop two
constructions for cryptographically enforcing dynamic RBAC
policies in untrusted cloud environments: one based on standard
public-key cryptographic Izchmqni& and amdvzr ‘based on
identity-based encrypti (IBE/ES) tech [y,
[13], [59]. By studying REAC, in the context of thase relatively

IEEE S&P 2016

Using a hybrid IBE/IBS construction to enforce

addU (u)

— Add u to USERS

— Generate IBE private key k., <+ KeyGen
key s, «+ KeyGen!BS () for the new user u

- Give k, and s, to u over private and authenticated channel

IBE (3) and IBS private

delU (u)
— For every role r that w is a member of:
x revokeU (u,)

addPy(fn, f)

- Generate symmetric key k < GenSY

- Send (F, fn,1 Encsym(f) u, SlgnIBs) and (FK, SU,
(fn,RW), 1, EnctBE (k), u, SlgnIBS) to R.M.

— The R.M. receives (F fn,1,¢c,u,sig) and (FK, SU, (fn,RW),
1, ¢, u, sig’) and verifies that the tuples are well-formed and the
signatures are valid, i.e., Ver!BS((F, fn, 1, ¢, u), sig) = 1 and
VerIBS(<FK SU, (fn RW) 1, ¢/, uy, sig’) = 1.

— If verification is successful, the R.M. adds (fn,1) to FILES and
stores (F, fn,1,c,u, sig) and (FK, SU, (fn,RW), 1, ¢/, u, sig’)

delP(fn)

- Remove (fn,v fn) from FILES

- Delete (F, fn,—,—,—, —) and all (FK, —, (fn,—), —, —, —, —)
addR(r)

- Add (r, 1) to ROLES

- Generate IBE private key k(, 1) < KeyGen!BE((r, 1)) and IBS
private key s(,. 1) < KeyGenIBS((r 1)) for role (r, 1)
- Send (RK, SU, (r,1), EnctBF (k;(,, 1) S(r, 1)) Signt2S) to RM.

delR(r)
- Remove (7, v,-) from ROLES
— Delete all (RK, —, (r,vy), —, —)

— For all permissions p = (fn, op) that r has access to:

RBAC policies is non-trivial...

assignP(r, (fn, op))
- For all (FK, SU, (fn,RW), v, c, id, sig) with Ver!BS((FK, SU,

(fn,RW), v, ¢, id), sig) = 1:

x If this adds Write permission to existing Read permission, i.e.,
op = RW and there exists (FK, (r,v), (fn, Read), v, c/, SU,
sig) with Vert2S ((FK, (r,vy), (fn,op’), v, ¢/, SU), sig) = 1:
- Send (FK, (r,vr), (fn,RW), v, ¢, SU SlgnIBS> to R.M.
- Delete (FK, (r,v;), {fn,Read), v, ¢/, SU, szg)

* If the role has no existing permission for the file, i.e., there does not
exist (FK, (r,vy), (fn,op’), v, ¢, SU, sig) with Verfg%s(<FK,
(r,vr), {fn,op'), v, c, SU), sig) = 1:

- Decrypt key k = Decggg()
- Send (FK, (r,v:), (fn,op), v, Enc%BE (k), SU, Sign7P)
to R.M.

revokeP(r, (fn, op))
- If op = Write:
x For all (FK, (r,v,), (fn,RW), v, ¢, SU, sig) with
Ver BS ((FK, (r,vr), (fn,RW), v, ¢, SU), sig) = 1:
- Send (FK, (r,vr), {fn,Read), v, ¢, SU, Sign'BS) to RM.
- Delete (FK, (r,v,), {(fn,RW), v, ¢, SU, sig)
- If op = RW:
x Delete all (FK, (r,v;), (fn,—), —, —, =)
* Generate new symmetric key k&’ < GenSY™
* For all (FK, 7/, (fn,op"), v¢,, ¢, SU, sig) with Verfg%s«FK,
r', (fn,op’), v, ¢, SU), sig) = 1:
- Send (FK, 7/, (fn,op"), vg, + 1, Enc%C]?E(k’), SU,
Signk?®) to RM.
* Increment v¢,, in FILES, ie., set vg, (= vy + 1

read, (fn)

- Find (F, fn,v,c,id, sig) with valid ciphertext ¢ and valid signature
sig, i.e., Ver%(ll,/?’s(<F7 fn,1,¢,id), sig) =1

— Find a role r such that the following hold:
x u 1s in role 7. ie.. there exists (RK. u. (r.v..). . sig) with

Revocations incur enormous costs, even in settings that are
only mildly dynamic

600 700

500

Tens to thousands of IBE encryptions
to revoke a user from a role

400

300

200

IBE encryptions per user revoked

100

o emea
© _ o ° - o firewall1
s = oo e =z 2 c o firewall2
= g g 3 o g & © irewa
® g s % 2 S T B healthcare
= = Dataset ¢ 5 § - university
9] o domino
@
2 g
s 2
Even when only 10% of admin @
. . R
operations are revocations, much 2
. . . > 9
system time is spent managing key SR =
. . . [0} 0
distributions w
o

0.70
0.75
0.80
0.85
0.90
0.95
1.00

Add bias

What are we to do?

Sources of revocation overheads
® Download, decrypt, re-encrypt, and upload of impacted file(s)
® Redistribution of new keys

Observation: All of this happens because access to the file
implies observation of the key used to encrypt it

What if we could broker access to files without revealing keys?

Our recent work seeks to improve this state of affairs by
combining cryptography and trusted hardware

SGX is a set of ISA extensions in recent Intel processors
= that enables secure execution environments

A key feature enabled by SGX is isolated execution

An enclave encodes the trusted portion of an untrusted application
® Hardware protected confidentiality and integrity for code and data
® Enclave are permitted to access application memory

® Applications cannot access .
enclave memory

Untrus Tuated
Part of App Part of App

g Er—v Execute
Create Enclave / 1

g / Return
Call Trusted F unc4/

Enclaves are even protected from
a malicious OS/Hypervisor

Caveat: Isolated execution alone
is not terribly useful

https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html

Two other features extend the utility of SGX
protections to a wide class of applications

Sealed storage allows for the long-term storage of enclave-
resident information

Untrusted
Part of App

3

Create Enclave

Call Trusted F uncA

——
SGXSEAL (<data>, esk)

Local and remote attestation allow processes to ensure the
authenticity of the enclaves that they rely on

Untrusted
Part of App

@ Create Enclave
< > Call Trusted FuncA

ey
Privileged System Code —J
05, Vi, BIOS, SHI...

NeXUS leverages SGX to enforce users’ access controls

on untrusted storage platforms

Cloud storage providers already allow rich access controls

Our goal is to enforce these types of access controls, even when

the storage platform is untrusted or compromised

NeXUS was built with two key design goals in mind

® Portability: Seamless integration with existing
storage providers and services

® Practicality: The use of NeXUS should not

Application
A

Y

NeXUS

SGX
enclave

&

\J

negatively impact common user workflows

Underlying Filesystem

AFS

Google Drive Dropbox

ﬂe/a/aym/w‘ withoul Server—side &y/ﬁaﬁt

Miinal aéa/ya& X

!

-
data &
metadata

files A

Threat Model

/ Security Objective: Unless granted explicit access by the owner,
the contents of files and directories (i.e., file names) must remain
confidential and tamper-evident.

May attempt o read)/modify ary fite,

/ St fX hardware fa/(a Lions /M/@/o{i

debote, ”’”‘{’b{% reorder, ﬁe/ﬁ/a% 0f z‘/‘afffa

‘ Attacker has complete control of the
Dolor-Yao style network adversary: /(v(y storage proviter, inoluding af/é%aem/&aﬂ
011)

NeXUS combines the cryptographic techniques used in our straw-
i man solution with SGX security guarantees

e o o o o o O S O O D S

SO

NeXUS combines the cryptographic techniques used in our straw-
i man solution with SGX security guarantees

e o o o o o O S O O D S

SO

_— e s s o o o S o
- s o o e e e o E—

NeXUS combines the cryptographic techniques used in our straw-
i man solution with SGX security guarantees

e o o o o o O S O O D S

SO

_— e s s o o o S o
- s o o e e e o E—

SGX feature utilization
® Encryption takes place in enclave to protect keys (isolated execution)
® Enclave state protected on local disk via enclave-derived keys (sealed storage)

NeXUS combines the cryptographic techniques used in our straw-
man solution with SGX security guarantees

foo

12] bar.txt
metadata

5N

SNZ-dNdTrEF5r51-X5K7yw. .
bu7E8tvd_A5mQP5S-voUJA..

frhlwC003jkGSD3xSGQFB7w. .

KLgjjLxvjmYPfmELxXNLF9g. .

yi7B6_e6LsPAv9trNdoPFA..

8 directories, 6 files

SGX feature utilization
® Encryption takes place in enclave to protect keys (isolated execution)
® Enclave state protected on local disk via enclave-derived keys (sealed storage)

NeXUS combines the cryptographic techniques used in our straw-
i man solution with SGX security guarantees

KLgjjLxvjmYPfmELXNLF9g..
12] yi7B6_e6LsPAv9trNdoPFA..
metadata

5N
L— [232] 5NZ-dNdATrEF5r5i-X5K7yw..
[2.0K] bu
L— [144] bu7E8tvd_A5mQP5S-voUJA..
[2.0K] fr

frhlwC00jkGSD3XSGQFfB7w. .

[2.0K] KL
L— [236] KLgjjLxvjmYPfmELxNLF9g..

yi7B6_e6LsPAv9trNdoPFA..

SGX feature utilization
® Encryption takes place in enclave to protect keys (isolated execution)
® Enclave state protected on local disk via enclave-derived keys (sealed storage)

NeXUS combines the cryptographic techniques used in our straw-
i man solution with SGX security guarantees

e o o o o o O S O O D S

SO

_— e s s o o o S o
- s o o e e e o E—

SGX feature utilization
® Encryption takes place in enclave to protect keys (isolated execution)
® Enclave state protected on local disk via enclave-derived keys (sealed storage)
® Authorization and key exchange across machines (remote attestation)

Why this design?

This design facilitates easy deployment for user-centric workloads
® No server-side modifications necessary
® No global nhamespace needed for file sharing
® Minimal administrative changes to existing file management

Getting this right involves a lot of moving parts
® Maintaining the metadata to support a filesystem within a filesystem
® Synchronization/consistency issues due to distributed enforcement
® Optimized communication between applications, kernel, and enclave

® Remote attestation with potentially offline partners
o ..

I’ll focus on the structure/management of a NeXUS volume and
a brief performance evaluation of our prototype

NeXUS: A stackable virtual filesystem

A

metadata
backing
store

<:> enclave

@@ ccalls

Storage API

Filesystem
Application NEXUS API
== === —= @— =
| | @
4{5@/@0@/]&‘ [f//e&%&’tem calls | @ shimiayer |
____'Hﬁst_meﬁst?nmg)_____'/

Kernel VFS

Filesystem Call

Description

Directory Operations
nexus_fs_touch()
nexus_fs_remove()
nexus_fs_lookup()
nexus_fs_filldir()
nexus_fs_symlink()
nexus_fs_hardlink()
nexus_fs_rename()

Creates a new file/directory

Deletes file/directory
Finds a file by name
Lists directory contents

Creates a symlink to a target path

Hardlinks two files

Moves a files between directories

File Operations
nexus_fs_encrypt()
nexus_fs_decrypt()

Encrypts a file contents
Decrypts a file contents

Table 1: NEXUS Filesystem APL

NeXUS:

A stackable virtual filesystem

Metadata fotohy/docode Plaintert path is transthted
\ it gpague path

metadata
backing
store

<:> enclave

@@ ccalls

Storage API

Filesystem
Application NEXUS API
r el — — — — e | e — — — — — @_ — _\I
| | @
4(5@/‘0@/5 f//@&%&’f@/f(calls | @ shimiayer |
____'FIBst_meWstﬁ(ﬂFS'r____'/

Kernel VFS

Fite blocks fafaéac{ f/wf(remote J’ta/‘aya

NeXUS stores sensitive filesystem data using metadata
= that reflects standard filesystem structures

Key data structures:

® Supernode: Stores filesystem info, including usertable

® Dirnode: Stores directory entries; maps filenames to UUIDs

® Filenode: Stores file chunk encryption keys

supernode dirnode filzbox
uuid uuid uuid
é{lfe//&/'l% /b/'—olfaalfec/ ‘i: root_uuid root_uuid root_uuid
owner_pubkey
Ccrypto context crypto context

%;
|

user table [] dir entries [] chunk antries []

/(f/@% material
5{0/%& ted

/NeXUS Enclave i A
» Enclave sealing key: esk;
* Volume rootkey: rk
N /

Example: Mounting a NeXUS volume
® Load sealed rootkey (rk) from local disk

I
® Use the local enclave sealing key (esk;) to decrypt : uuid
O Note: Neither esk; or rk ever leave the enclave! | | oot i
. | LW OeT ﬂlJ.:Ekﬂ.'!."_ N\
® Use rk to decrypt the cryptographic context e |

O Context = ENC(mek, rk)

/Disk A
« SGXSEAL(rk, esk;)
L /

— - =y,

supernode

I |
tabl
0 mek = random metadata encryption key '\

® Use mek to decrypt and validate supernode

This process works similarly for all other metadata structures

Locate f//a/mc/a pornting Lo the Downboad Mg/%atec/ contents 0f

Kecover root dirnode contents of oake.c w#4da2 (e, cake.c)

R 3
fd21sdw mk89cel po21a21 S(NEXUS_ROOT)
(dirnode) (dirnode) (filenode)
Nexus supemode parent uuid: fd21sdw 71 parentuvid: fd21sdw p?ﬂ?g;g:ad. o
oot dir | fd21sdw ame uuid I name Luic ll data file uid: n44da2 (encrypted file)
a.txt k2la32w cake.c p021a21 chunk 1 key chunk 1
i docs eQme23a i chunk 2 key - - chunk 2

) | A i chunk 3 key == chunk 3

Fied dirnode AN

w/v/‘%/’m{af/}y L bar’

fe/ﬂaﬁata &%& faﬁ ohanks
within a 0[/%/, WHY7

I’ve glossed over some important details...

® A sealed rootkey for the volume

® Their public key

"To mount a NeXUS volume, the user must provide Bownd & theiw CPU
® The volume’s (encrypted) supernode

The NeXUS enclave carries out a challenge/response to authenticate
the user via proof-of-possession of their private key

user

user keypair:
{ pku, sku }

pku, SGXSEAL(rootkey)

enclave

nonce

Read encrypted
supernode

m = SIGN(sku, nonce|supernode)

Unseal rootkey and
generate nonce

nonce <= {@, 1}*

- decrypt supernode
- Get pku in supernode

-VERIFY(pku, m)

If the user successfully authenticates and is listed in the supernode,
the NeXUS enclave mounts the volume

That works for the volume, but what about access
control to individual files?

NeXUS has an ACL-based scheme for directory-level access controls
® Richer access control models are future work

supernode dirnode
uuid uuid
root_uuid roat uuid

owner_pubkey

crypto context crypto context

s N

Contains {ﬁa///e &% U /ﬂ/ nAppINGS Contains / an permiSSIon / mappings

The NeXUS enclave acts as a distributed reference monitor
® Every access must flow through the enclave (keys never leave!)
® Keys only used to decrypt files iff the authenticated user is authorized

We’ve integrated NeXUS with OpenAFS

Why OpenAFS? It’s used at Pitt to offer networked storage to faculty,
staff, and students!

Our implementation modifies the OpenAFS client and provides an
administrative console for managing volumes and access controls

Implementation
® Total size: ~22k SLOC (excluding MbedTLS and keywrapping libraries)
® Shimlayer to interface with AFS: ~3200 SLOC
® Enclave size: ~9900 SLOC

Important: No modifications were made to
the OpenAFsS server!

e compared NeXUS over AFS to a stock AFS install

Microbenchmarks identify metadata I/0 as a potential bottleneck

Prototype File Size
IMB 2MB 16MB 64 MB Lrctave overhead is small
OpenAFS 0.6154 15251 55504 22.2458 i both //ﬁ ad divectory
NeXUS 0.5143 1.4632 6.8117 28.5648
Metadata I/O 0.0957 0.1270 0.1438 0.8032 féﬂ&é/ﬁd/‘és’
Enclave 0.0238 0.0973 0.5889 2.0774

(a) NEXUS runtime (seconds) on File I/O operations.

Prototype Number of files
1024 2048 4096 8192
/a/yw directories rmcar
OpenAFS 1.2713 2.6310 5.2658 11.9394
NEXUS 19.3864 38.6209 81.9818 172.2965 g,d'@,,,él/ga,ﬂf overheads f/w(
Metadata /O 17.4407 34.6376 73.6640 154.3439
Enclave 0.3858 0.7909 1.6790 3.5514 /%fd/d?fd ﬂﬁ

(b) NEXUS runtime (seconds) on directory operations.

e compared NeXUS over AFS to a stock AFS install

Database benchmarks show high performance for asynchronous
operations, and expected delays for synchronous operations

Operation OpenAFS NeXUS Overhead

LevelDB

Fillseq 10.5 MB/s 8.1 MB/s 1.29

fillsync 2.2 ms/op 4.5 ms/op 2.04

fillrandom 5.9 MB/s 3.7MB/s 1.59

overwrite 4.0 MB/s 2.6 MB/s 1.53

readseq 664.6 MB/s 718.1 MB/s 0.94 /4 /M/@yamf{ to disk ixvolres a/a/'b‘/)g; on
readreverse 425.0 MB/s 425.7 MB/s 0.99

readrandom 227 pis ,ép 37 pis f;p 62 sequentiad writes o metadata [ie., fitebores)
fill100K 11.0 MB/s 7.2 MB/s 1.52 d/(/fé@ /dfd /'L‘J’é%’z ﬂ:@., f//& 04/’605&"/
SQLITE

fillseq 6.5 MB/s 6.4 MB/s 1.01

fillseqsync 144 ms/op 31.4 ms/op 2.18

fillseqbatch 70.2 MB/s 69.7 MB/s 1.00

fillrandom 4.2 MB/s 4.2 MB/s 1.00

fillrandsync 13.4ms/op 31.2 ms/op 2.34

fillrandbatch 7.6 MB/s 7.7 MB/s 0.98

overwrite 3.4 MB/s 3.4 MB/s 1.00

overwritebatch 3.8 MB/s 4.4 MB/s 0.86

Table 2: Database benchmark results

In cloning git repositories, our overheads are impacted by

metadata complexity

200 |-| @ openafs
B nexus

ﬂee/a direc Ifo/y trees and lots 0f f//é@ per
direc Ifo/y means lts af dirnode and f//éiw&

gpera lions

4
|
1
1
1
1
1
1
1
1
1
|
l

redis julia nodejs

N o == -

(a) Latency for cloning Git repositories.
Redis Julia / Nodejs

[|
maxdepth 6 7 1 13
directories 59 116 : 1839
files 618 1096 | 19912 |
max dirsize 116 153 | 1458 :

Vo -

(b) Directory statistics for git repositories.

e compared NeXUS over AFS to a stock AFS install

Standard linux utilities run with acceptable overheads

Workload #files Total Size

LFSD Large Files and Small Directory 32 3.2 GB

MFMD Medium Files and Medium Directory 256 2.5GB

SFLD Small Files and Large Directory 1024 10 MB

1 openafs [nexus
:‘u? large-file-small-dir medium-file-medium-dir 7 small-file-large—-dir \\
Q I I 1 1 I 3 I I 1 I I I I 1 I I I i
9 — 7] 1L o 11
” wnl|»lA {falae nl| @ 0 3 " 41
& HEI IR a {IP18] 2 g |B8[|F18 85 o0 JH8| 2% 0 g 28 |l
C ol | oo o0 @ S w Jilal @ 8 (D)9 |sle] & 2w o] m ™ @ o oY Qo
o NI . G| o =8l @2 [CE (L8] -+ ® o= S o8 | eld] P 2]I
=Sl (RIS [Sle] - - 1128 o [ofB]|®|®s| © C - QS © al=| |—|e| o o © 3

: -1l m i il 5] | muE]
E grep tar-c¢ cp mv tar-x du grep tar-c¢ cp

Overheads are /a/y/e@ a 0‘«/{0 Lion 0f direc ta/% am/a%w/l{y

What about the overheads of revocation?

Workload #files Total Size
r ml
. _LFSD _Large Files and Small Directory __ _ __ 32___32G6B
MFMD Medium Files and Medium Directory 256 2.5 GB
SFLD Small Files and Large Directory 1024 10 MB

Recall: Revocation in a purely cryptographic system is expensive!
® Download, decrypt, re-encrypt, upload, key distribution

Example: In LFSD, we’re looking at 3.2 GB to shuffle around

Because keys in NeXUS never leave the enclave, life is simpler
® In LFSD, we’re looking at modification of about ~3KB of metadata

Conclusions

Securing data stored in the cloud is of increasing importance

Revocation incurs high overheads in purely-cryptographic approaches

NeXUS combines client-side cryptography and trusted hardware
® Designed to balance portability and practicality
® Distributed access control via client-side SGX enclaves
® No server-side support necessary for deployment
® Key containment enables low-cost revocation

Reasonable overheads for a variety of workloads

Future work
® |Increased throughput via server-side support
® Richer access controls

