
An Overview of Logistic Regression

Christoph Maier Coordinator of the Applied Research Lab

Stats For Lunch December 8, 2009

Slide 1

Outline

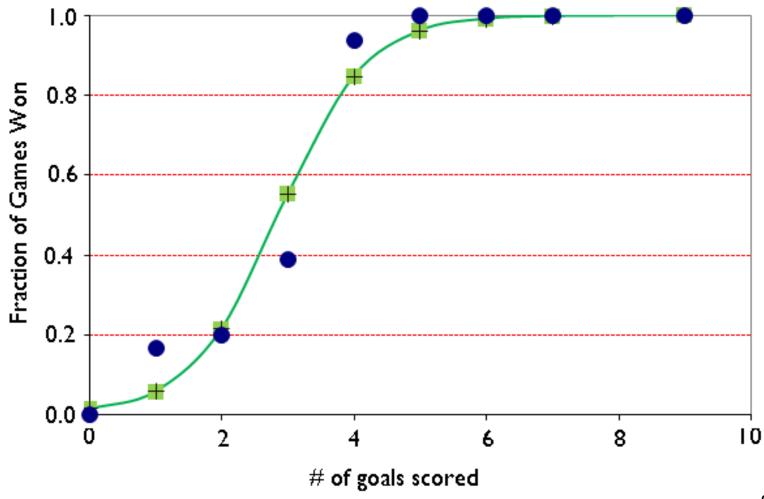
Slide 3 References

- Slides 4-8 Example 1: Predicting the Likelihood of the Pittsburgh Penguins winning a game with one predictor (Goals Scored by Pittsburgh)
- Slide 9 Comparison of Multiple and Logistic Regression
- Slides 10-18 Dummy Variables, Odds, and Odds Ratios
- Slides 19-31 Example 2: Predicting Likelihood of winning with 2 predictors (Goals Scored & Home Game)

Slides 32-36 Example 3: Use of Control Variables

References

SPSS Survival Manual, 3rd edition by Julie Pallant, McGraw Hill, 2007. ISBN-13 978-033522366-4.


Discovering Statistics Using SPSS by Andy Field, Sage Publications, 2005. ISBN 0-7619-4452-4.

http://faculty.chass.ncsu.edu/garson/PA765/logistic.htm

Pittsburgh Penguins Hockey Team 2008-2009 Predicting the Likelihood of Winning a Game

# of goals scored by Pittsburgh	# of games won	# of games played	Percentage of games won
0	0	3	0%
1	2	12	17%
2	3	15	20%
3	7	18	39%
4	15	16	94%
5, 6, 7,9	18	18	100%

Observed Likelihood and the Predicted Likelihood of Winning

Use SPSS to Estimate the Likelihood (Probability) of Winning

Important Fields in the Variable View Tab:

	Name	Туре	Decimals	Label	Values	Measure
1	ID	Numeric	0	Game ID	None	💑 Nominal
2	GoalsScored	Numeric	0	Goals Scored	None	🔗 Scale
3	Won	Numeric	0	Won game	{0, no}	😞 Nominal
4	HomeGame	Numeric	0	Home game	{0, no}	😞 Nominal

0 = No 1 = Yes

SPSS Data View Tab

Data View Tab:

From the SPSS Output

Variables in the Equation

		В	S.E.
Step 1ª	GoalsScored	1.504	.328
	Constant	-4.308	1.001

a. Variable(s) entered on step 1: GoalsScored.

$$P(winning) = \frac{1}{1 + e^{-(b_0 + b_1 \text{ NumGoals})}} = \frac{1}{1 + e^{-(-4.308 + 1.504 \text{ NumGoals})}}$$

So when they score 3 goals the likelihood of their winiing the game

$$\frac{1}{1 + e^{-(-4.308 + 1.504 \times 3)}} = .551$$

Multiple Regression vs Logistic Regression

Multiple Regression	Logistic Regression
Predicted values like the DV	DV=binary (yes/no) but your predict probability=likelihood [0,1]
Estimation by OLS=Ordinary Least Squares	by MLE=Maximum Likelihood Estimation (involves iterating)

Dummy or Indicator Variables

In multiple and logistic regression, you can not use nominal variables like scale variables.

Must create dummy variables to use in place of the nominal variable:

First Decide which level is the reference category Then create dummy variables for all other levels Each dummy variable is coded 0 = no and 1=yes

Example: Variable=Race

Race: Nominal variable with 4 levels

1=Caucasian	2=African American	3=Asian	4=Other
Reference	First Dummy Variable	Second	Third
Category	AfricanAm	Dummy	Dummy
	O-Nia 1-Mar	Asian	OtherRace
	0=No 1=Yes	0=No	0=No
		1=Yes	1=Yes

In SPSS

Race	AfricanAm	Asian	OtherRace
1	0	0	0
2	1	0	0
3	0	1	0
4	0	0	1

How does the reference category work? Race=1

AfricanAm=0 (no), Asian=0 (no) Otherrace=0 (no)

Caucasian=Not African American, not Asian, not other

 $odds = \frac{Odds \text{ of an event occurring}}{probability of the event occurring}}$

Probability (likelihood) of contracting a certain disease by race

race	Caucasian (reference category)	African American	Other
Probability	.23	.17	.75
Odds	.23/.77=.3	.17/.83=.2	.75/.25=3

Odds Ratio			
odds ratio = <u>odds of the target category</u>			
	odds of t	he reference	category
race	Caucasian (reference category)	African American	Other
Probability	.23	.17	.75
Odds	.23/.77=.3	.17/.83=.2	.75/.25=3
Odds Ratio	Reference	.2/.3 = .67	3/.3 = 10

Interpretation

race	Caucasian (reference category)	African American	Other
Probability	.23	.17	.75
Odds	0.3	0.2	3 ←
Odds Ratio	Reference	0.67	1 0
			1

An individual from an other race is 3-times more likely to contract the disease than not to contract the disease

The odds of an African-American individual contracting this disease is 67% of the <u>odds of a</u> <u>Caucasian contracting the</u> <u>disease.</u> The odds of an individual from a race other than Caucian or African American contracting the disease is 10 times that of a Caucasian

Odds Ratios for Continuous Variables

Suppose Odds ratio = 1.1 where

- Reference category= any year
- Target category= the next year
- The odds of contracting the disease increases by a multiplicative factor of 1.1 every year.
- The target and the reference category can be reversed. Target category is the year before the reference category. Then the odds ratio = 1/1.1 = .909. Recommended when odds ratio < 1.

Odds Ratios for Continuous Variables

For odds ratio of 1.1 per year

- If the odds is 0.8 for a 50 year old, then the odds for a 51 year old is 0.8*1.1 = 0.88
- And the odds of a 52 year old is
 0.88*1.1=0.8*(1.1)² = 0.968
- ... and the odds for a 60 year old is
 .8*(1.1)¹⁰ = 2.07

Interpretation of Odds Ratios for Continuous Variables				
Odds ratio = 1.1 for age (in years)	Odds ratio = .4 for income (in thousands of \$)			
The odds of contracting the disease increases by a factor of 1.1 per year	The odds of contracting the disease changes by a factor of .4 for every additional \$1000 increase in salary			
The odds of contracting the disease increases 10% per year. (not by 10 percentage points!)	The odds of contracting the disease increases by a factor of 2.5 for every \$1000 <u>drop</u> in income.			
The odds of contracting the disease doubles every 7.3 years. $\frac{\ln(2)}{\ln(\text{odds ratio})} = \frac{\ln(2)}{\ln(1.1)}$	The odds of contracting the disease more than doubles for every \$1000 <u>drop</u> in income.			

Second Example

Predict the likelihood of Pittsburgh winning a game based on two predictors:

The number of goals they score in the game. GoalsScored = scale variable

Whether the game is a home game. Home = Nominal variable where 0= no, not a not home (away game) 1=yes, a home game

Home is a nominal Variable

But it only has two levels so once you choose the reference category, there is only one level that must be converted to a dummy variable.

Reference category: 0= Away game Dummy variable : Home 0=away 1=home

☺ The original variable is the dummy variable.
Dummy variables coded 0 and 1, not 1 and 2.

Question # 1 Does at least one of these predictors significantly predict the likelihood of winning?

Omnibus Tests of Model Coefficients

Chi-square	df	Sig.
51.5	2	.000
51.5	2	.000
51.5	2	.000

X²(2) = 51.5 p < .0005 so yes, at least one of these predictors does help predict the likelihood of winning the game.

Overall test or omnibus test of the model

Compares -2Log likelihood of the intercept only model vs.

-2LL of the model with these two predictors.

- Smaller -2LL means that the model fits better.
- The difference follows a chi-square distribution with degrees of freedom = number of predictors

Question # 2 What is r² for this model?

Model Summary

Step	-2 Log likelihood	Nagelkerke R Square
1	61.378ª	 •

a. Estimation terminated at iteration number 6 because parameter estimates changed by less than .001.

Cox & Snell underestimates R²

1

So using Nagelkerke, the model as a whole explains 62.4% of the variability in outcomes of the game.

Question # 3

How well does the model predict wins and losses?

Classification Table^a

			Predicted					
		Won	game	Percentage				
	Observed		no	yes	Correct			
Step	Won	no	31	6	83.8			
1	game	yes	8	37	82.2			
	Overall I	Percentage			82.9			
	Overall I	<u> </u>			82.9			

Predict a win if likelihood > .5 (default)

a. The cut value is .500

- The Penguins lost 31+6=37 of their games. The model correctly predicted a loss in 31 (83.8%) of those games (specificity).
- The Penguins won 8+37=45 of their games. The model correctly predicted a win in 37 (82.2%) of those games (sensitivity).

Question # 4

Are the individual predictors statistically significant?

Variables in the Equation

		в	S.E.	Wald	df	Sig.
Step	GoalsScored	1.52	.33	21.5	1	.000
1 ^a	HomeGame	.87	.65	1.78	1	.182
	Constant	-4.8	1.08	19.3	1	.000

GoalsScored X²(1)=21.5 p<.0005 significant

HomeGame X²(1)=1.78 p=.182 Not significant

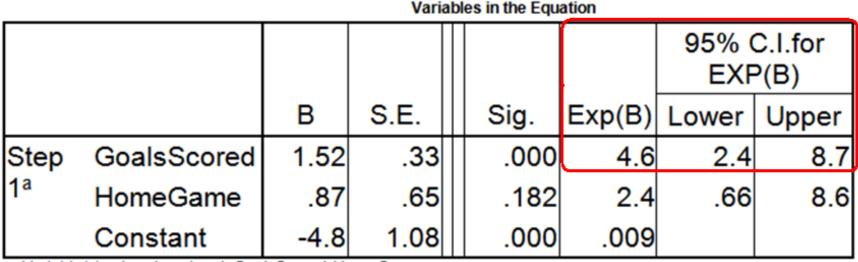
Wald's test also has a Chi-square distribution

Warning: This test can under some circumstances tend to declare that statistically significant variables are not statistically significant.

Question # 5 Equation for Predicting likelihood of winning?

	Variables in the Equation				
		в	S.E.		
Step 1ª	GoalsScored	1.52	.33		
1 ^a	HomeGame	.87	.65		
	Constant	-4.8	1.08		

The coefficients (B) in Logistic regression are called "Logits", because they are the natural log of the odds ratio.


 $1 + e^{-(b_0 + b_1 \text{ NumGoals} + b_2 \text{ HomeGame})}$

A. Variable(s) entered on step 1: GoalsScored HomeGame

P(winning) =

$$1 + e^{-(-4.8 + 1.52 \text{ NumGoals} + .87 \text{ HomeGame})}$$

Question # 6 What is the effect of GoalsScored?

a. Variable(s) entered on step 1: GoalsScored. HomeGame.

Use odds ratio = Exp(B)

The odds of winning the game increases by a factor of 4.6 for every additional goal scored! (more than quadruples)

95% confident that the odds of winning the game increases by a factor of between 2.4 and 8.7 for every additional goal scored.

Question # 7 What is the effect of HomeGame?

	Variables in the Equation							
						•	95% (EXF	C.I.for P(B)
		В	S.E.		Sig.	Exp(B)	Lower	Upper
Step	GoalsScored	1.52	.33		.000	4.6	2.4	8.7
1 ^a	HomeGame	.87	.65		.182	2.4	.66	8.6
	Constant	-4.8	1.08		.000	.009		

a. Variable(s) entered on step 1: GoalsScored. HomeGame.

The odds of winning a home game is 2.4 times the odds of winning an away game.

95% confident that the odds of winning a home game is between 0.66 and 8.6 times the odds of winning an away game. Note that 1 falls in the interval [0.66, 8.6]

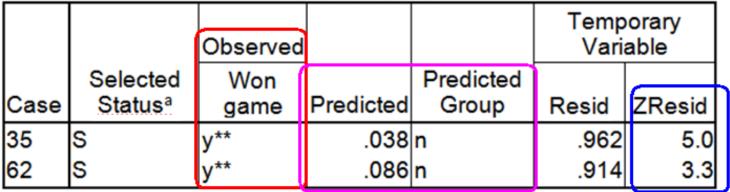
Question # 8 Which predictor is the most important predictor of winning a game?

	Variables in the Equation							
							95% (EXF	
		В	S.E.		Sig.	Exp(B)	Lower	Upper
Step	GoalsScored	1.52	.33		.000	4.6	2.4	8.7
1 ^a	HomeGame	.87	.65		.182	2.4	.66	8.6
	Constant	-4.8	1.08		.000	.009		

a. Variable(s) entered on step 1: GoalsScored. HomeGame.

Can not just compare the odds ratios since they are dependent on the magnitude of the unit. One strategy: standardize the units. Goals Scored: M=3.22 SD=1.785 HomeGame: M=.5 SD=.503 Which predictor is the most important predictor of winning a game?

Goals Scored:


M=3.22 SD=1.785 OR=1.52 $OR^{SD} = 1.52^{3.22} = 3.85$ HomeGame: M=0.5 SD=.503 OR=2.4 $OR^{SD} = 2.4^{.503} = 1.55$

Which factor is a more important predictor?

- GoalsScored: odds increases by a factor of 3.85 when GoalsScored increases by 1 SD. ⁽²⁾ more important
- HomeGame: odds increases by a factor of 1.55 when HomeGame is increased by 1 SD.

Question # 9 Are there any outliers?

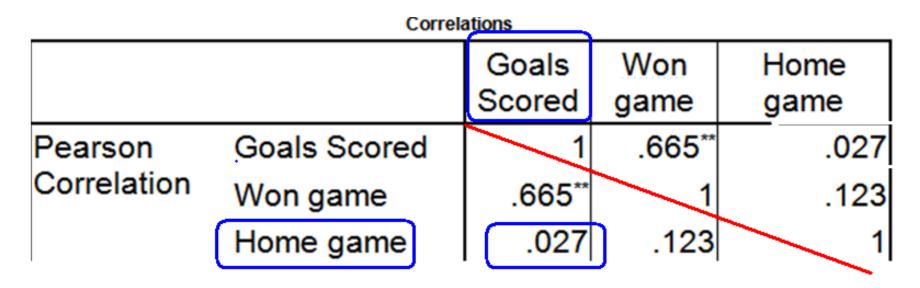
Casewise List^b

a. S = Selected, U = Unselected cases, and ** = Misclassified cases.

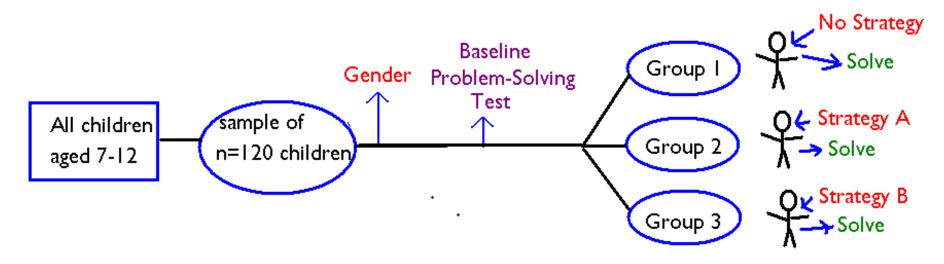
b. Cases with studentized residuals greater than 2.0 are listed.

Look for values of |Zresid| >3

Two games- won both but model predicts a loss


- # 35 They won this away game by a score of 1-0.
- #62 They won this home game by a score of 1-0.
- Note: Good to look at values of Cook's D > 1

And |Leverage values| > 3(number of predictors+1)/n


Question # 10 Does the data meet the conditions for using Logistic Regression

MultiColinearity

Look for values of |r| > .8 between predictors Where r=Pearson Correlation Coefficient

Example # 3

<u>Variables</u>

- Pretest Scale
- Gender Nominal
- Strategy Nominal
- Solve Nominal

Control Variable

- Independent Variable
 - Independent Variable
- Dependent Variable

Example # 3 How the SPSS Variables were coded

- Gender 1=Female 2=Male
- Pretest scale of 0 to 100 points
- Strategy 1=No strategy (control) 2=Strategy A 3=Strategy B
- Solve 0=No, not correctly solved
 1=yes, correctly solved

Example # 3 SPSS Dummy Variables

- Gender 1=Female 2=Male
 - → reference category: Male first dummy: Female 0=No 1=Yes
- Strategy 1=No strategy (control) 2=Strategy A 3=Strategy B
 - → reference category: control first dummy: StrategyA 0=no 1=yes second dummy: StrategyB 0=no 1=yes

Hierarchical Logical Regression in SPSS Use two blocks: control variables in the first block and predictors in the second block

Logistic Regression		×
 cogretic Regression studentid Strategy Female Pretest StrategyA StrategyB 	Dependent: Solve Solve Block 1 of 1 Pre jous Covariates: Pretest Pretest Method: Enter Selection Variable:	Categorical Save Options
	Rule	
ОК	Paste <u>R</u> eset Cancel Help	

SPSS Screen Analyze \rightarrow Regression \rightarrow Logistic

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

	Chi-square	df	Sig.
Step Step	22.7	1	.000
1 Block	22.7	1	.000
Model	22.7	1	.000

Block 1 Effect of the control variables (pretest score)

Block 2: Method = Enter

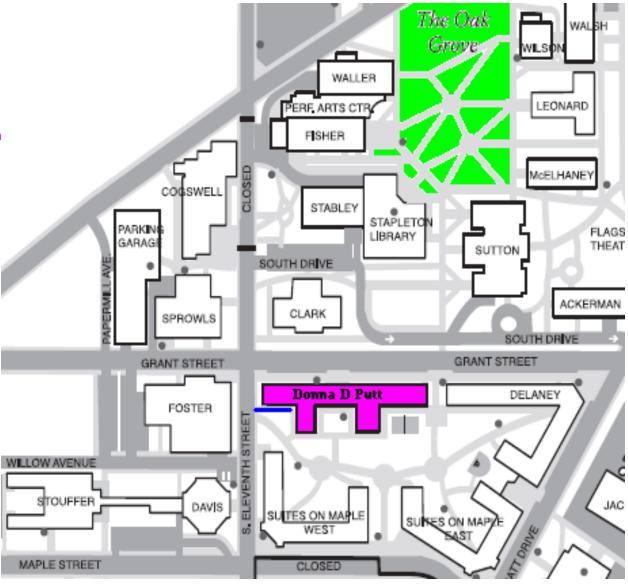
Omnibus Tests of Model Coefficients

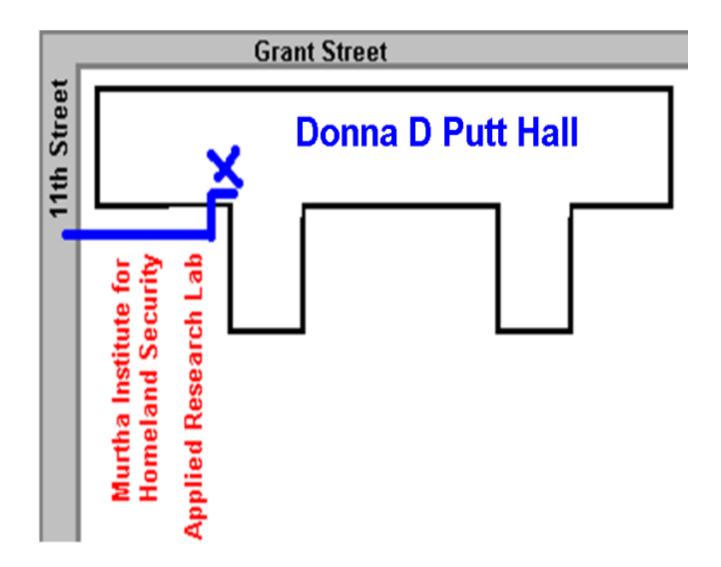
	Chi-square	df	Sig.
Step Step	15.5	3	.001
1 Block	15.5	3	.001
Model	38.3	4	.000

Block 2 Effect of the Predictors (female, Strategy A, Strategy B) after adjusting for control variables

How to contact the ARL?

Location: G10 Donna D Putt Hall


Hours: Monday through Friday 8:00– 4:00 (Fall, Spring, Summer I, and Summer II)


<u>Phone</u>: (724) 357- 4530

Web page: www.iup.edu/arl

Email: iup-arl@iup.edu

Personnel 2009-2010

Coordinator:

Christoph Maier

Graduate Consultants

Steven Brewer

Ben Jarrett

Chad Nease

Danielle Smyre

Beth Watson

Criminology

Mathematics

Mathematics

Educational Psychology

Psychology

Applied Research Lab