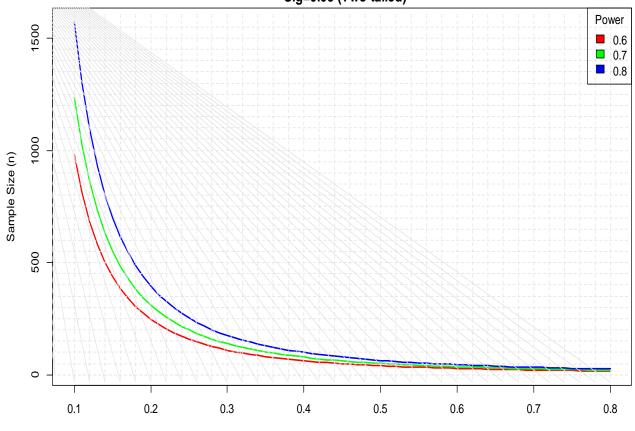


Using R for Power Analysis Presenters: Ding Yu and Jeremy Yagle Spring 2013

R is a free software downloadable at http://www.r-project.org/

Notes:	Code and Output:	
1. R Console Setup:		
 prompts you for formula or function. 		
The result appears on the next line(s).		
2. Comments begin with #		
Anything in the line following a # is a comment.	> # This is a comment!	
3. Installing a Package	CRAN mirror psychoteols psychotee	# In step 3) you can also
 To conduct a power or sample size analysis using R the pwr package must be installed and loaded. Select "Install Packages" in the dropdown menu "Packages" at the top of the screen. Select the country, and state that is nearest you. Select the package "pwr" and press "ok". Activate the package using the library command. All the following functions are also explained in this link. 	UK (St Andrews) USA (CA 1) USA (CA 2) USA (CA 2) USA (CA 2) USA (CA 2) USA (CA 2) USA (CA) USA (MD) USA (MD	use the command: >install.packages("pwr") Step 4) type in > library(pwr)
http://cran.r-project.org/web/packages/pwr/pwr.pdf		
4. the conventional effect size (Cohen's Rules of Thumb)		
cohen.ES(test = c("p", "t", "r", "anova", "chisq", "f2"), size = c("small", "medium", "large")) Arguments: Test: Choose one statistical test of interest Size: Choose <u>one</u> effect size: small, medium, or large		
5. Determine a medium effect size for a two-samples t-test	<pre>>cohen.ES(test = c("t"), size =</pre>	c("medium"))
according to Cohen's Rules of Thumb Cohen suggests that d values of 0.2, 0.5, and 0.8 represent small, medium, and large effect sizes respectively.	Conventional effect size from test = t size = medium effect.size = 0.5	
6. Determine a small effect size for multiple regression	<pre>>cohen.ES(test = c("f2"), size</pre>	= c("small"))
	Conventional effect size from test = f2 size = small effect.size = 0.02	Cohen (1982)

7. power analysis function for t-tests	
<pre>pwr.t.test(n = , d = , sig.level = , power = ,</pre>	
type = c("two.sample", "one.sample", "paired"),	
alternative = c ("two.sided" , "less","greater"))	
Arguments:	
d: Effect size	
n: Number of observations in sample	
sig.level: Significance level (default= .05)	
power: Power of test (usually 0.8)	
type: Choose one character string (default= two-sample)	
specifying the type of t-test.	
alternative: choose one character string (default two.sided)	
specifying the alternative hypothesis.	
8. Find the power for an independent-samples t-test given	>pwr.t.test(n =30 , d = .5, sig.level =.05)
sample size	Two-sample t test power calculation
For an independent-sample two-sided t-test, with 30 subjects in	
each group, and a medium effect size. What is the power?	n = 30
	d = 0.5
	sig.level = 0.05
	power = 0.4778965
	alternative = two.sided
	NOTE: n is number in *each* group
9. Find the required sample size for an independent-samples t-	>pwr.t.test(n =NULL , d = .2, sig.level =.05, power=.8
test and a given power	
	Two-sample t test power calculation
For an independent-sample two-sided t-test, 80% power, and a	
small effect size. What is the sample size?	n = 393.4057
	d = 0.2
	sig.level = 0.05
	power = 0.8
	alternative = two.sided
	NOTE: n is number in *each* group
10. Displaying the sample size (n) only	pwr.t.test(n =NULL , d = .2, sig.level =.05, power=.8)
Add " <mark>\$n</mark> " to the end of the pwr.t.test command.	[1] 393.4057
11. t-test (two samples with unequal n) example	
	>pwr.t2n.test(n1 =20 , n2=80 , d =.5 , sig.level = 0.05
Function: pwr.t2n.test	<pre>power =NULL ,alternative = c("two.sided",</pre>
	"less","greater"))
Example. Find the power for an independent-samples t-test at	t test power calculation
the 5% level of significance, medium effect size, with sample sizes	
sizes of 20 and 80.	n1 = 20
	n2 = 80
	d = 0.5
	sig.level = 0.05
	power = 0.5081857
	alternative = two.sided


12. Balanced one way ANOVA	
Function: pwr.anova.test	
Arguments:	
k: Number of groups	
n: Number of observations per group	
f: Effect size(Cohen suggests that f values of 0.1, 0.25, and 0.4	
represent small, medium, and large effect sizes respectively).	
sig.level: Significance level	
power: Power of test	
13. Balanced one way ANOVA Example	<pre>> pwr.anova.test(k =3 , n =NULL , f =.25, sig.level =.05 power =.8)</pre>
Example. Find the sample size for a one way ANOVA test, with 3	. ,
groups, a medium effect size, 80% power, and at the 5% level of significance.	Balanced one-way analysis of variance power calculation
	k = 3
	n = 52.3966
	f = 0.25
	sig.level = 0.05
	power = 0.8
So n= 53 per group (159 total)	NOTE: n is number in each group
14. Chi Square	
Function: pwr.chisq.test	
Arguments:	
w: Effect size	
N: Total number of observations	
df: Degrees of freedom.	
Usually (number of rows-1)(number of columns -1)	
sig.level: Significance level	
power: Power of test	
15. Chi Square Example	> pwr.chisq.test(w =.3 , N =300 , df =6 , sig.level = 0.0
Example. Find the power for a Chi Square test for independence	power =NULL)
for two categorical variables (one with three levels and one with four levels), with 300 observation, a medium effect size, and at	(Cohen suggests that w values of 0.1, 0.3, and 0.5 represent small, medium, and large effect sizes
the 5% level of significance.	respectively).
4 levels (columns)	Chi squared power calculation
els(rows)	
	w = 0.3
Age	N = 300
Education 20-29 30-39 40-49 50 and older	df = 6
G.E.D	sig.level = 0.05
	power = 0.9872113
A.A	
A.A	NOTE: N is the number of observations
	NOTE: N is the number of observations

16. Multiple Regression		
Function: pwr.f2.test		
Arguments:		
u: Numerator degrees of freedom (the number of continuous		
predictors plus the number of dummy variables minus one)		
v: Denominator (error) degrees of freedom		
f2: Effect Size		
(Cohen suggests f2 values of 0.02, 0.15, and 0.35 represent small,		
medium, and large effect sizes).		
sig.level: Significance level		
power: Power of test		
Notes: every categorical variable with k levels has k-1 dummy		
variables because one level serves as the reference category		
The sample size(n) is the sum of u and v plus one.		
17. Multiple Regression Example	-	st(<mark>u = 4</mark> , v = NULL, f2 = .15, sig.level = 0.05,
Example	power = 0	.0j
Find sample size $u = 4$		Multiple regression power calculation
for multiple regression test		multiple regression power calculation
with two continuous predictor,		
* GRE score		u = 4
* Blood pressure, 2 continuous varia	bles	v = 79.44992
and two categorical predictors,		$f_2 = 0.15$
Sex (Male or Female), + (2-1) dummy var	ables	sig.level = 0.05
Marital Status (married, single, or other), + (3-1) dummy var	ables	power = 0.03
with a medium effect size,		
80% power,	-	
and at the 5% level of significance.		
Note: total sample size = N = 80+4+1=85		
18. Example Generating a Table of sample sizes	>seq=c(0.1	l, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8)
18. Example Generating a Table of sample sizes	>seq=c(0.1 >FindN=ar	
18. Example Generating a Table of sample sizes	>FindN=ar	
18. Example Generating a Table of sample sizes Example:	>FindN=ar > <mark>for (i in 1</mark>	ray(0,8)
	>FindN=ar > <mark>for (i in 1</mark> sig.level=.	ray(0,8) <mark>:8]</mark> FindN[i]=pwr.t.test(d=seq[i],power=.8,
Example: Suppose that you are determining the required sample size for a	>FindN=ar > <mark>for (i in 1</mark> sig.level=.	ray(0,8) <mark>:8)</mark> FindN[i]=pwr.t.test(d=seq[i],power=.8, 05, type="two.sample",
Example: Suppose that you are determining the required sample size for a two-sided upper-tailed independent samples t-test with 80%	>FindN=ar >for (i in 1 sig.level=. alternative	ray(0,8) <mark>:8)</mark> FindN[i]=pwr.t.test(d=seq[i],power=.8, 05, type="two.sample",
Example: Suppose that you are determining the required sample size for a two-sided upper-tailed independent samples t-test with 80% power.	>FindN=ar >for (i in 1 sig.level=. alternative	ray(0,8) 8 FindN[i]=pwr.t.test(d=seq[i],power=.8, 05, type="two.sample", e="greater") <mark>\$n</mark> ne(d=seq ,N=ceiling(FindN))
Example:	<pre>>FindN=ar >for (i in 1 sig.level=. alternative >data.fran</pre>	ray(0,8) 18] FindN[i]=pwr.t.test(d=seq[i],power=.8, 05, type="two.sample", e="greater") <mark>\$n</mark> ne(d=seq ,N=ceiling(FindN))
Example: Suppose that you are determining the required sample size for a two-sided upper-tailed independent samples t-test with 80% power. Generate a table showing the required sample size for each of the following 8 effect sizes:	>FindN=ar >for (i in 1 sig.level=. alternative >data.fran d N	ray(0,8) 18) FindN[i]=pwr.t.test(d=seq[i],power=.8, 05, type="two.sample", e="greater") <mark>\$n</mark> ne(d=seq ,N=ceiling(FindN)) 8
Example: Suppose that you are determining the required sample size for a two-sided upper-tailed independent samples t-test with 80% power. Generate a table showing the required sample size for each of the	>FindN=ar >for (i in 1 sig.level=. alternative >data.fran d N 1 0.1 123	ray(0,8) 18] FindN[i]=pwr.t.test(d=seq[i],power=.8, D5, type="two.sample", e="greater") <mark>\$n</mark> ne(d=seq ,N=ceiling(FindN)) 8 0
Example: Suppose that you are determining the required sample size for a two-sided upper-tailed independent samples t-test with 80% power. Generate a table showing the required sample size for each of the following 8 effect sizes:	<pre>>FindN=ar >for (i in 1 sig.level=. alternative >data.fran d N 1 0.1 123 2 0.2 31</pre>	ray(0,8) 18 FindN[i]=pwr.t.test(d=seq[i],power=.8, 05, type="two.sample", e="greater") <mark>\$n</mark> ne(d=seq ,N=ceiling(FindN)) 8 0 9
Example: Suppose that you are determining the required sample size for a two-sided upper-tailed independent samples t-test with 80% power. Generate a table showing the required sample size for each of the following 8 effect sizes:	<pre>>FindN=ar >for (i in 1 sig.level=. alternative >data.fran d N 1 0.1 123 2 0.2 31 3 0.3 13</pre>	ray(0,8) 18 FindN[i]=pwr.t.test(d=seq[i],power=.8, 05, type="two.sample", e="greater")\$n ne(d=seq ,N=ceiling(FindN)) 8 0 9 8
Example: Suppose that you are determining the required sample size for a two-sided upper-tailed independent samples t-test with 80% power. Generate a table showing the required sample size for each of the following 8 effect sizes:	<pre>>FindN=ar >for (i in 1 sig.level= alternative >data.fram d N 1 0.1 123 2 0.2 31 3 0.3 13 4 0.4 7</pre>	ray(0,8) 18 FindN[i]=pwr.t.test(d=seq[i],power=.8, 05, type="two.sample", e="greater")\$n ne(d=seq ,N=ceiling(FindN)) 8 0 9 8 1
Example: Suppose that you are determining the required sample size for a two-sided upper-tailed independent samples t-test with 80% power. Generate a table showing the required sample size for each of the following 8 effect sizes:	<pre>>FindN=ar >for (i in 1 sig.level= alternative >data.fran d N 1 0.1 123 2 0.2 31 3 0.3 13 4 0.4 7 5 0.5 5</pre>	ray(0,8) 18 FindN[i]=pwr.t.test(d=seq[i],power=.8, 05, type="two.sample", e="greater")\$n ne(d=seq ,N=ceiling(FindN)) 8 9 8 1 6

19. Generating Power Curve # Plot sample size curves for detectin # various sizes.	
	# various sizes.
	library(pwr)
xample:	
Suppose that you are determining the required sample size for a	# range of effect sizes
wo-sided upper-tailed independent samples t-test with 80%	d <- seq(.1,.8,.01)
bower.	nd <- length(d)
Generate power curves showing the required sample size for each	# power values
of the following 8 effect sizes:	p <- seq(.6,.8,.1)
d = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8.	np <- length(p)
	# obtain sample sizes
On the graph output:	samsize <- array(numeric(nd*np), dim=c(nd,np))
	for (i in 1:np){
axis shows the range of effect sizes	for (j in 1:nd){
	result <- pwr.t.test(n = NULL, d = d[j],
v axis shows required samples sizes	sig.level = .05, power = p[i],
	alternative = "two.sided")
hree power curves are generated (p=.6, .7, or .8). You can find	samsize[j,i] <- ceiling(result\$n)
he required sample size on the y axis respective to the desired	}
effect size and power.	}
	# set up graph
	xrange <- range(d)
	<pre>yrange <- round(range(samsize))</pre>
	colors <- rainbow(length(p))
	plot(xrange, yrange, type="n",
	xlab="Effect sizes (d)",
	ylab="Sample Size (n)", ylim=c(0,1600))
	# add power curves
	for (i in 1:np){
	<pre>lines(d, samsize[,i], type="l", lwd=2, col=colors[i])</pre>
	}
	# add annotation (grid lines, title, legend)
	abline(v=0, h=seq(0,yrange[2],50), lty=2, col="grey89"
	abline(h=0, v=seq(xrange[1],xrange[2],.02), lty=2, col="grey89")
	title("Sample Size Estimation for t-test Studies\n
	Sig=0.05 (Two-tailed)")
	<pre>legend("topright", title="Power", as.character(p), fill=colors)</pre>

Sample Size Estimation for t-test Studies

Sig=0.05 (Two-tailed)

Effect sizes (d)