

How to run Regression Analyses using R Presenters: Tom Coyne and Jon Wayland Spring 2013

R is a free software downloadable at http://www.r-project.org/

Notes:	Code and Output:				
 1. R Console Setup: > prompts you for formula or function. The result appears on the next line(s). 2. Comments begin with # 					
Anything in the line following a # is a comment.	# This is a comment!				
 3. Loading a Package Many functions and data sets are available in packages that be downloaded from a CRAN site. We generally use PA 1 (Carnegie Mellon) We will be loading a package called "foreign". 1) Select "Packages" at the top of the screen. 2) Select "Load package" 3) Select the package "foreign" and press "ok". 4) Activate the package using the library command. 	Select one base boot class cluster codetools compiler # local({pkg <- select.list(sort(.packages(all.available = foreign TRUE)),graphics=TRUE) graphics grid KernSmooth lattice MASS > library(foreign) Matrix methods mgcv nlme nnet parallel pwr rpat spatial splines stats stats4 survival tcltk tools utils CK C				
 Importing a Dataset We will look at the predictive ability of: 	<pre>> honda = read.spss(file.choose(), to.data.frame = TRUE) > attach(honda)</pre>				
• Odometer reading (thousands of Miles),	> head(honda) # this shows the first 6 cases of your data				
• Age (years)	frame. Odometer is measured in thousands of miles, age in				
• Type(Coupe vs. Sedan)	years, and price in dollars.				
on Honda prices(dollars).	ID ODOMETER AGE TRIM TYPE PRICE				
	1 45 102 2 EX COUPE 7555				
	2 68 20 0 LX SEDAN 15995				
	3 91 38 0 LX SEDAN 14995				
	4 112 48 0 LX SEDAN 14995				
	5 133 22 0 EX COUPE 15995				
	6 154 26 0 EX SEDAN 15995				

5. Regression					
Fitting a model to data and using it to predict					
dependent, or outcome, variablesi) Simple Regression: Predicting an outcome					
 Simple Regression: Predicting an outcome variable from one independent, or predictor, 					
variable.					
ii) Multiple Regression: Predicting an outcome					
variable from two or more predictor variables.					
6. Simple Regression	> ImSLR = Im(PRICE~ODOMETER)				
We will run a simple linear regression analysis to predict	> summary(ImSLR)				
the price of Hondas using the number of miles on the odometer as the predictor.	Residuals:				
	Min 1Q Median 3Q Max				
Predictor variable = ODOMETER Outcome variable = PRICE	-5194.3 -1074.7 5.9 1241.8 5290.8				
	Coefficients:				
	Estimate Std. Error t value Pr(> t)				
	(Intercept) 15856.741 750.186 21.14 <2e-16 ***				
	ODOMETER -92.831 8.343 -11.13 <2e-16 ***				
Multiple R-squared = .663. Mileage on the odometer accounts for 66.3% of the variation in Honda prices.	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1				
F-statistic = 123.8 with , p-value < 2.2e-16.	Residual standard error: 2035 on 63 degrees of freedom				
	Multiple R-squared: 0.6628, Adjusted R-squared: 0.6574				
Overall, this means the regression model predicts Honda prices well.	F-statistic: 123.8 on 1 and 63 DF, p-value: < 2.2e-16				
8. Confidence Intervals for the Parameters	>round(confint(ImSLR),1)				
	2.5 % 97.5 %				
	(Intercept) 14357.6 17355.9				
	ODOMETER -109.5 -76.2				
8. Plotting the Data	> plot(PRICE~ODOMETER, xlab="odometer reading(Thousand mil				
	ylab="Price(\$)", xlim=c(0,200))				
	> abline(ImSLR, col="red", lwd=2)				
	99 90 - woo o				
	- 000 - 000				
	°°° – – 1300				
	0 0 0				

8. Plotting the Residuals	> resid = residuals(ImSLR)				
To check for linearity, plot the residuals vs. the odometer reading	<pre>> plot(resid~ODOMETER, main = "Residuals Plot", ylab = "Residuals", xlab = "ODOMETER", col = "blue", pch=16)</pre>				
	> abline(h=0, col="red", lwd=2)				
	Residuals Plot				
9. Plotting the Residuals	ODOMETER > qqnorm(resid)				
To check for normality, generate the QQ plot of the residuals:	> qqline(resid, col="red")				
	Normal Q-Q Plot				
	Sentine of the sentence of the				
10. Multiple Linear Regression Involves the same concept as simple linear regression, but includes two or more predictor variables.					
Predictor variables must be continuous or dichotomous categorical variables.					
11. Assumptions Multicollinearity: The predictor variables should not correlate too highly with each other (r > .80)					
12. Checking Assumptions: Multicollinearity To check the assumption of multicollinearity, we will run a correlation matrix for the predictor variables in R.	<pre>> cor(AGE, ODOMETER, use = "pairwise.complete.obs", method = "pearson") [1] 0.6182078</pre>				
Rule of Thumb: r < .8					

13. Multiple Linear Regression – Continuous Variables Only	> ImMLR = Im(PRICE~ODOMETER + AGE) > summary(ImMLR)					
Predictor variables: AGE, ODOMETER						
Outcome variable: PRICE						
14. Interpretation	Call:					
Multiple R-squared = .884. 88.% of the variation in	Im(formula = PRICE ~ ODOMETER + AGE)					
Honda prices can be attributed to the mileage on the						
odometer and the age of the car.	Residuals:					
F-statistic = 245.7, p-value < 2.2e-16.	Min 1Q Median 3Q Max					
	-2409.15 -825.74 -93.09 749.81 2480.65					
<i>b</i> -values found under Estimate column. For every						
1000-mile increase in the odometer reading, we would	Coefficients:					
expect the price of the car to decrease by \$50.27. For	Estimate Std. Error t value Pr(> t)					
every one-year increase in age, we would expect the	(Intercept) 15328.018 438.414 34.962 < 2e-16 ***					
price of the car to decrease by \$579.41.	ODOMETER -50.268 6.167 -8.152 2.16e-11 **					
······································	AGE -579.405 51.898 -11.164 < 2e-16 ***					
t-values are significant at the 0.001 level, indicating that						
both odometer and age are significant predictors of car	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1					
prices.						
prices.	Residual standard error: 1182 on 62 degrees of freedom					
Beta values are then obtained to more accurately	Multiple R-squared: 0.888, Adjusted R-squared: 0.8844					
determine the importance of each predictor in the	F-statistic: 245.7 on 2 and 62 DF, p-value: < 2.2e-16					
model.						
15 Obtaining Standardized Data Estimates	Singtell peaks ges/"OvertBays")					
15. Obtaining Standardized Beta Estimates	>install.packages("QuantPsyc")					
We must install and load the "QuantPsyc" package	# to load spss file, select "packages" in the top menu and					
We then create an object that only includes the	choose "Load Packages"					
We then create an object that only includes the	# from the package list, choose "QuantPsyc"					
predictor variables.	>library(QuantPsyc)					
Age of car is a stronger predictor of car price than	>lm.beta(lmMLR)					
odometer value. As age increases by 1 standard	ODOMETER AGE					
u ,						
deviation, the price decreases by 0.604 standard	-0.4408387 -0.6037712					
deviations. As the odometer reading increases by 1						
standard deviation, the price decreases by 0.441						
standard deviations.						
16. Multiple Linear Regression – Adding a	> table(TYPE)					
Dichotomous Categorical Variable	> table(TYPE) TYPE					
	COUPE SEDAN					
New variable: TVPF						
New variable: TYPE	23 42					
Prodictor Variables: ACE ODOMETED TYPE	> ImMLR2 = Im(PRICE~ODOMETER + AGE + TYPE)					
Predictor Variables: AGE, ODOMETER, TYPE Outcome Variable: PRICE	<pre>> IIIIWILK2 - III(FRICE ODOWETER + AGE + ITPE)</pre>					
	> summary(ImMLR2)					
	~ summar y(mmvitrz)					
17. Interpretation	Call:					
	Im(formula = PRICE ~ ODOMETER + AGE + TYPE)					
Multiple R-squared = .888. 88.8% of the variation in						
Multiple R-squared = .888. 88.8% of the variation in Honda prices can be attributed to the mileage on the						
Multiple R-squared = .888. 88.8% of the variation in	Residuals:					
Multiple R-squared = .888. 88.8% of the variation in Honda prices can be attributed to the mileage on the						

b-values found under Estimate column. For every 1000-	Coefficients:				
mile increase in the odometer reading, we would	Estimate Std. Error t value Pr(> t)				
expect the price of the car to decrease by \$50.95. For	(Intercept) 152	(Intercept) 15235.884 508.875			< 2e-16 ***
every one-year increase in age, we would expect the	ODOMETER	<mark>-49.951</mark>	6.271	-7.965	5.05e-11 ***
price of the car to decrease by \$580.93. We would	AGE	-580.930	52.432	-11.080	3.05e-16 ***
expect a sedan to cost \$114 more than a coupe.	TYPESEDAN	<mark>113.557</mark>	311.855	0.364	0.717
<mark>t-values</mark> are significant at the <mark>0.001 level</mark> , indicating that both odometer and age are significant predictors of car	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1				
	Residual standard error: 1191 on 61 degrees of freedom				
prices.	Multiple R-squared: 0.8882, Adjusted R-squared: 0.8827				
	F-statistic: 161.6 on 3 and 61 DF, p-value: < 2.2e-16				
18. Obtaining Standardized Beta Estimates	>Im.beta(ImMLR2)				
Create data frame that includes three predictor	ODOMETER AGE TYPESEDAN				
variables.	-0.4380576 -0.6053604 NA				
Age of car is a stronger predictor of car price than					
odometer value. As age increases by 1 standard					
deviation, the price decreases by 0.605 standard					
deviations. As the odometer reading increases by 1					
standard deviation, the price decreases by 0.438					
standard deviations.					