

Using R for Graphing Workshop Presenters: Jeremy Yagle and Jon Wayland Spring 2013

R is a free software downloadable at http://www.r-project.org/

Notes:	Code and	Output:	
 01 R Console Setup: > prompts you for formula or function. The result appears on the next line(s). 			
O2 R Use of the up-arrow: ↑ For many of the following commands we'll be using, it will be easier to use the up-arrow on the keyboard to have R recall our last typed command. We'll remind you'll to do this with the green italicized text above the command.	follow in later steps helps prevent typog	. Using the up graphic errors.	ome of the commands that arrow saves you typing time and ghlighted areas below:
 03 file.choose() command We'll start by directing R to find the Excel file that contains the data for our graph. We do this with the file.choose() command. After you type the first line and hit enter, R will pop up a window that allows you to select the file. Find the file US States Education Rates.csv and double-click on it. Next, we'll use attach() to let R know that we want to work with this data. Use head() to see the variable names. 	 > education=read.csv(> attach(education) > head(education) State Region Perce 1 Alabama South 2 Alaska West 3 Arizona West 4 Arkansas South 5 California West 6 Colorado West 		e Percent.Bachelors.and.above 22.0 26.6 25.6 18.9 29.9 35.9
Note: categories are listed in alphabetical order. Although we are not using it in these notes, you can change the order of the categories: I.e. Instead of Region being ordered alphabetically "MW", "NE", "S", "W", you can change the order to: "NE", MW", "S", "W" using the command: Region=factor(Region, levels=c("NE", "MW", "S", "W"))			

		Number of States Per Region	
Bar Charts		₩	
04 generate a table of frequencies To organize the data for our chart, use the table() command, and direct R to build a table that contains the number of states in each of the four regions.	<pre>> table(Region) Region Midwest Northeast South West 12 9 17 13</pre>	Number of States	
05 generate the basic bar chart Use the barplot () command, and specify that we want to use the data in table(Region) that we created above.	>barplot(table(Region))	Midwest Northeast South West Region	
O6 specify the scale on the axis The y-axis scale that R assigned to our graph isn't a good fit, so change the scale to go from 0 to 20, using the ylim=c() argument . The boundaries for the scale are typed in the c(,)	Use the ↑ key, and change only the high > barplot(table(Region), <mark>ylim=c(0,20)</mark>)	lighted areas below:	
07 add a title Add a title to the graph with the main="" argument. Each bar represents the number of states in the geographic region.	Use the \uparrow key, and change only the highlighted areas below: > barplot(table(Region),ylim=c(0,20), main="Number of States Per Region")		
08 modify the axes labels Label the y-axis. Similar to the argument above, use ylab=" " to specify what the y-axis values represent.	Use the ↑ key, and change only the high > barplot(table(Region),ylim=c(0,20), ma ylab="Number of States" , xlab="Region"	in="Number of States Per Region",	
09 file.choose() command To investigate other options for graphing data, switch to the data set we used in the Introduction workshop. Use file.choose() to direct R to find the Excel file that contains	> body=read.csv(file.choose())		
the data for our graphs. After you type the first line and hit enter, R will pop up a window that allows you to select the file. Find the file body.csv and double-click on it.	 > attach(body) > head(body) Gender Weight Height 1 Female 118 64.5 2 Male NA 72.5 3 Male 143 73.3 4 Male 172 68.8 		
Use attach() to let R know that we want to work with this data. Use head() to see the variable names.	5 Female 147 65.0 6 Female 146 69.0		

	All Weights
Histograms	$\left[\begin{array}{c} 7\\ 6\\ -\\ 5\\ -\\ 4\\ -\\ -\\ -\\ -\\ 1\\ -\\ 0\\ -\\ 100 \end{array}\right]$
10 create a histogram Use the hist() command to plot a histogram of all weights of the people in the data set.	> hist(Weight)
11 add a label and title Modify the command to include a title for the graph, and a label for the x- axis. Use the arguments main="" to name our title, and xlab="" to label the axis.	Use the ↑ key, and change only the highlighted areas below: > hist(Weight <mark>, main="All Weights", xlab="Weight in Pounds")</mark>
12 display available colors in R R has hundreds of available colors. To see a full listing of the color choices, use the colors() command. Just a sample of the colors is shown here.	<pre>> colors() [1] "white" "aliceblue" "antiquewhite" [4] "antiquewhite1" "antiquewhite2" "antiquewhite3" [7] "antiquewhite4" "aquamarine" "aquamarine1"(and a lot more!) [655] "yellow3" "yellow4" "yellowgreen"</pre>
13 add color to the bars Add some color to our plot by using the col= argument. Here, we make chocolate-colored bars. You can experiment with other colors by changing the color name inside of the "".	Use the ↑ key, find this command, and change only the highlighted areas below: > hist(Weight, main="All Weights", xlab="Weight in Pounds", col="chocolate")
 14 rotate numbers on the y-axis Use the las=1 argument to write all numbers on the axes parallel to the bottom of the plot. Default: las=0 : parallel to the axis 	Use the ↑ key, find this command, and change only the highlighted areas below: > hist(Weight, main="All Weights", xlab="Weight in Pounds", col="chocolate", las=1)
15 increase the font size of the axes Use the cex.axs = and cex.lab = to amount by which the size of the axes numbers and labels should be scaled relative to the default. So 0.8 means 80% of the default size and 1.2 means 120% of the default size.	Use the ↑ key, find this command, and change only the highlighted areas below: > hist(Weight, main="All Weights", xlab="Weight in Pounds", col="chocolate", las=1, cex.axis=1.2, cex.lab=1.2)

Arranging two graphs on the same page Example: Two Histograms aligned in a 2 row x 1 column format	Female Weights	
16 creating new vectors Create two new vectors; one for weights of all female subjects, and one for weights of male subjects. To exclude the missing values, use !is.na()	<pre>>fw=Weight[Gender=="Female" & !is.na(Weight)] Use the ↑ key, and change only the highlighted areas below: > mw=Weight[Gender=="Male" & !is.na(Weight)]</pre>	
17 divide the output window Use the par () command to change the set-up of the output window. By using mfrow=c(2,1) , we divide the window into two rows. This will give us a top and bottom plot. We could make it side-by-side histograms if we change it to mfrow=c(1,2) .	> par(mfrow=c(2,1))	
18 create top/bottom plots Using the hist () command, create 2 histograms in our output window – one for females, and one for males.	> hist(fw,main="Female Weights", xlab="Weight in lbs", col="pink") Use the ↑ key, and change only the highlighted areas below:	
Note that as you enter commands, R automatically places the graph in the next open spot in the output window.	> hist(<mark>mw</mark> ,main=" <mark>Male</mark> Weights", xlab="Weight in lbs", col="light blue")	
19 scaling and labeling the x-axis We can improve the quality of our graphs by keeping the scale of the x-	Use the \uparrow key to find the "Female Weights" command and change only the highlighted areas below:	
axis consistent for both of our categories (female/male). Here we set the scale with the xlim=c()	<pre>> hist(fw,main="Female Weights", xlab="Weight in lbs", col="pink", xlim=c(100,200))</pre>	
argument.	Use the ↑ key, and change only the highlighted areas below: > hist(mw,main="Male Weights", xlab="Weight in lbs", col="light blue", xlim=c(100,200))	

Side-by-side Boxplots	Boxplot	
20 Set the window to display one graph Change back to a single plot per figure.	>par(mfrow=c(1,1))	
21 create a box plot Now, make a boxplot of the weights. When we use the ~ symbol in a command, we direct R to organize one variable in the data by another variable. (The ~ key is located to the left of the "1" key on the keyboard) The range= argument sets the	> boxplot(Weight~Gender, range=1.5)	
whiskers to go to the last points that are within 1.5*IQR of the quartiles 22 scale the y-axis		
We can change the scaling of the y- axis using the ylim=c() argument.	Use the ↑ key, and change only the highlighted areas below: > boxplot(Weight~Gender, range=1.5, ylim=c(100,200))	
Now, let's add in some color to the plots, using the col=" " argument.	Use the \uparrow key, and change only the highlighted areas below: > boxplot(Weight~Gender, range=1.5, ylim=c(100,200), col="grey")	
24 add a title and axes labels	Use the ↑ key, and change only the highlighted areas below: > boxplot(Weight~Gender, range=1.5, ylim=c(100,200),col="grey", main="Boxplot", xlab="Gender", ylab="Weight in lbs", las=1)	
25 add a horizontal line at the overall mean Use the abline() command	<pre>>abline(h=mean(Weight, na.rm=T), col="red", lwd=2)</pre>	

	Weight vs. Height		
Scatter Plots	$ \begin{array}{c} & + & & & & & \\ & & & + & & & & \\ & & & &$		
26 create a scatter plot			
We can create a scatter plot of all heights vs. all weights using the features we used earlier	<pre>> plot(Weight~Height, las=1, main="Weight vs. Height", ylab="Weight in lbs", xlab="Height in inches")</pre>		
27 Modify the plotting symbols The pch= argument directs R to choose from 25 different plotting symbols. Here, we're using two different types - triangles and crosses.	Use the ↑ key, and change only the highlighted areas below: > plot(Weight~Height,las=1,main="Weight vs. Height", ylab="Weight in lbs", xlab="Height in inches", col=c("red", "blue"), pch=2:3, cex=1.2)		
For plotting symbols, see: http://www.statmethods.net/advgrap hs/parameters.html			
28 add vertical grid lines Add grid lines to the graph using the grid() command. The first argument inside the parentheses is the condition for vertical bars, and the second is for the horizontal bars (NA=off, NULL=aligned with scale values).	> grid(NA, NULL, col="darkgrey")		
29 add grid lines in both directions By changing both arguments to NULL , we will have vertical and horizontal grid lines on the graph.	> grid(NULL, NULL, col="darkgrey")		
30 add a fit line We can also add the fit lines to our graph for each gender. To do so, we first need to generate the line using the Im() command. We'll assign the result of that command to a variable	<pre>> ImF=Im(Weight[Gender=="Female"]~Height[Gender=="Female"]) > ImM=Im(Weight[Gender=="Male"]~Height[Gender=="Male"])</pre>		
we'll call ImF and ImM Now, we can put the line the on plot with the abline() command.	> abline(ImF, col="red", Iwd=2) > abline(ImM, col="blue", Iwd=2)		

31 save your graph as a .png file While it's possible to copy/paste the graph from the output window, saving the graph in an image file format will make it more efficient to work with, and more professional-looking in your documents.	
First, use getwd() to make sure you are saving to the correct destination. Then, choose what format you want to save your graph in; (pdf, types jpeg, bmp, or tiff). In this example, we will save the graph a .png file, using the	<pre>> getwd() [1] "C:/Users/Your user name/Documents" > png("weight height.png")</pre>
command png() Next, enter the R command to generate the graph you wish to save. (NOTE: you will not see the graph in the output window, since the information that generates the graph is being saved instead of being displayed.)	> plot(Weight~Height)
Finally, type in the command dev.off() , which saves the graph in the file format you specified, and writes the file to the location you specified.	<pre>> dev.off() windows 2</pre>