

Using R for Graphing Workshop

Presenters: Jeremy Yagle and Jon Wayland
Spring 2013

R is a free software downloadable at http://www.r-project.org/

 Notes: Code and Output:

01 R Console Setup:
> prompts you for formula or
function.
The result appears on the next line(s).

02 R Use of the up-arrow:
For many of the following commands
we’ll be using, it will be easier to use

the up-arrow on the keyboard to have
R recall our last typed command.

We’ll remind you’ll to do this with the
green italicized text above the

command.

You’ll see this instruction before some of the commands that
follow in later steps. Using the up arrow saves you typing time and
helps prevent typographic errors.

Use the key, and change only the highlighted areas below:

03 file.choose() command
We’ll start by directing R to find the
Excel file that contains the data for
our graph. We do this with the
file.choose() command. After you
type the first line and hit enter, R will
pop up a window that allows you to
select the file. Find the file US States
Education Rates.csv and double-click
on it.

Next, we’ll use attach() to let R know
that we want to work with this data.
Use head() to see the variable names.

============================
Note: categories are listed in
alphabetical order. Although we are
not using it in these notes, you can
change the order of the categories:

I.e. Instead of Region being ordered
alphabetically “MW”, “NE”, “S”, “W” ,
you can change the order to:
 “NE”, MW”, “S”, “W”
using the command:
Region=factor(Region, levels=c("NE",
"MW", "S", "W"))

> education=read.csv(file.choose())
> attach(education)
> head(education)
 State Region Percent.HS.and.Above Percent.Bachelors.and.above
1 Alabama South 82.1 22.0
2 Alaska West 91.4 26.6
3 Arizona West 84.2 25.6
4 Arkansas South 82.4 18.9
5 California West 80.6 29.9
6 Colorado West 89.3 35.9

http://www.r-project.org/

Bar Charts

04 generate a table of frequencies
To organize the data for our chart, use
the table() command, and direct R to
build a table that contains the number
of states in each of the four regions.

> table(Region)
Region
Midwest Northeast South West
 12 9 17 13

05 generate the basic bar chart
Use the barplot () command, and
specify that we want to use the data
in table(Region) that we created
above.

>barplot(table(Region))

06 specify the scale on the axis
The y-axis scale that R assigned to our
graph isn’t a good fit, so change the
scale to go from 0 to 20, using the
ylim=c() argument . The boundaries
for the scale are typed in the c(,)

Use the key, and change only the highlighted areas below:

> barplot(table(Region), ylim=c(0,20))

07 add a title
Add a title to the graph with the
main=” “ argument. Each bar
represents the number of states in
the geographic region.

Use the key, and change only the highlighted areas below:

> barplot(table(Region),ylim=c(0,20), main="Number of States Per Region"
)

08 modify the axes labels
Label the y-axis. Similar to the
argument above, use ylab=” “ to
specify what the y-axis values
represent.

Use the key, and change only the highlighted areas below:

> barplot(table(Region),ylim=c(0,20), main="Number of States Per Region",
ylab="Number of States" , xlab="Region")

09 file.choose() command
To investigate other options for
graphing data, switch to the data set
we used in the Introduction
workshop. Use file.choose() to direct
R to find the Excel file that contains
the data for our graphs.

After you type the first line and hit
enter, R will pop up a window that
allows you to select the file. Find the
file body.csv and double-click on it.

Use attach() to let R know that we
want to work with this data. Use
head() to see the variable names.

> body=read.csv(file.choose())

> attach(body)
> head(body)
 Gender Weight Height
1 Female 118 64.5
2 Male NA 72.5
3 Male 143 73.3
4 Male 172 68.8
5 Female 147 65.0
6 Female 146 69.0

Histograms

10 create a histogram
Use the hist() command to plot a
histogram of all weights of the people
in the data set.

> hist(Weight)

11 add a label and title
Modify the command to include a title
for the graph, and a label for the x-
axis. Use the arguments main=” “ to
name our title, and xlab=” “ to label
the axis.

Use the key, and change only the highlighted areas below:

> hist(Weight, main="All Weights", xlab="Weight in Pounds")

12 display available colors in R
R has hundreds of available colors. To
see a full listing of the color choices,
use the colors() command. Just a
sample of the colors is shown here.

> colors()
 [1] "white" "aliceblue" "antiquewhite"
 [4] "antiquewhite1" "antiquewhite2" "antiquewhite3"
 [7] "antiquewhite4" "aquamarine" "aquamarine1"
…(and a lot more!)…
[655] "yellow3" "yellow4" "yellowgreen"

13 add color to the bars
Add some color to our plot by using
the col= argument. Here, we make
chocolate-colored bars. You can
experiment with other colors by
changing the color name inside of the
“ “.

Use the key, find this command, and change only the highlighted areas
below:

> hist(Weight, main="All Weights", xlab="Weight in Pounds",
col="chocolate")

14 rotate numbers on the y-axis
Use the las=1 argument to write all
numbers on the axes parallel to the
bottom of the plot.
Default: las=0 : parallel to the axis

Use the key, find this command, and change only the highlighted areas
below:

> hist(Weight, main="All Weights", xlab="Weight in Pounds",
col="chocolate", las=1)

15 increase the font size of the axes
Use the cex.axs= and cex.lab= to
amount by which the size of the axes
numbers and labels should be scaled
relative to the default.
So 0.8 means 80% of the default size
and 1.2 means 120% of the default
size.

Use the key, find this command, and change only the highlighted areas
below:

> hist(Weight, main="All Weights", xlab="Weight in Pounds",
col="chocolate", las=1, cex.axis=1.2, cex.lab=1.2)

Arranging two graphs on the same
page

Example: Two Histograms aligned in

 a 2 row x 1 column format

16 creating new vectors
Create two new vectors; one for
weights of all female subjects, and
one for weights of male subjects. To
exclude the missing values,
use !is.na()

>fw=Weight[Gender=="Female" & !is.na(Weight)]

Use the key, and change only the highlighted areas below:

> mw=Weight[Gender=="Male" & !is.na(Weight)]

17 divide the output window
Use the par () command to change
the set-up of the output window. By
using mfrow=c(2,1), we divide the
window into two rows. This will give
us a top and bottom plot. We could
make it side-by-side histograms if we
change it to mfrow=c(1,2).

> par(mfrow=c(2,1))

18 create top/bottom plots
Using the hist () command, create 2
histograms in our output window –
one for females, and one for males.

Note that as you enter commands, R
automatically places the graph in the
next open spot in the output window.

> hist(fw,main="Female Weights", xlab="Weight in lbs", col="pink")

Use the key, and change only the highlighted areas below:

> hist(mw,main="Male Weights", xlab="Weight in lbs", col="light blue")

19 scaling and labeling the x-axis
We can improve the quality of our
graphs by keeping the scale of the x-
axis consistent for both of our
categories (female/male). Here we
set the scale with the xlim=c()
argument.

Use the key to find the “Female Weights” command and change only the
highlighted areas below:

> hist(fw,main="Female Weights", xlab="Weight in lbs", col="pink",
xlim=c(100,200))

Use the key, and change only the highlighted areas below:

> hist(mw,main="Male Weights", xlab="Weight in lbs", col="light blue",
xlim=c(100,200))

Side-by-side Boxplots

20 Set the window to display one
graph
Change back to a single plot per
figure.

>par(mfrow=c(1,1))

21 create a box plot
Now, make a boxplot of the weights.
When we use the ~ symbol in a
command, we direct R to organize
one variable in the data by another
variable. (The ~ key is located to the
left of the “1” key on the keyboard)

The range= argument sets the
whiskers to go to the last points that
are within 1.5*IQR of the quartiles

> boxplot(Weight~Gender, range=1.5)

22 scale the y-axis
We can change the scaling of the y-
axis using the ylim=c() argument.

Use the key, and change only the highlighted areas below:
> boxplot(Weight~Gender, range=1.5, ylim=c(100,200))

23 add color
Now, let’s add in some color to the
plots, using the col=” “ argument.

Use the key, and change only the highlighted areas below:
> boxplot(Weight~Gender, range=1.5, ylim=c(100,200), col="grey")

24 add a title and axes labels

Use the key, and change only the highlighted areas below:
> boxplot(Weight~Gender, range=1.5, ylim=c(100,200),col="grey",
main="Boxplot", xlab="Gender", ylab="Weight in lbs", las=1)

25 add a horizontal line at the
overall mean
Use the abline() command

>abline(h=mean(Weight, na.rm=T), col="red", lwd=2)

Scatter Plots

26 create a scatter plot
We can create a scatter plot of all
heights vs. all weights using the
features we used earlier

> plot(Weight~Height, las=1, main="Weight vs. Height", ylab="Weight in
lbs", xlab="Height in inches")

27 Modify the plotting symbols
The pch= argument directs R to
choose from 25 different plotting
symbols. Here, we’re using two
different types - triangles and crosses.

For plotting symbols, see:
http://www.statmethods.net/advgrap
hs/parameters.html

Use the key, and change only the highlighted areas below:

> plot(Weight~Height,las=1,main="Weight vs. Height", ylab="Weight in
lbs", xlab="Height in inches", col=c("red", "blue") , pch=2:3, cex=1.2)

28 add vertical grid lines
Add grid lines to the graph using the
grid() command. The first argument
inside the parentheses is the
condition for vertical bars, and the
second is for the horizontal bars
(NA=off, NULL=aligned with scale
values).

> grid(NA, NULL, col="darkgrey")

29 add grid lines in both directions
By changing both arguments to NULL,
we will have vertical and horizontal
grid lines on the graph.

> grid(NULL, NULL, col="darkgrey")

30 add a fit line
We can also add the fit lines to our
graph for each gender. To do so, we
first need to generate the line using
the lm() command. We’ll assign the
result of that command to a variable
we’ll call lmF and lmM

Now, we can put the line the on plot
with the abline() command.

> lmF=lm(Weight[Gender=="Female"]~Height[Gender=="Female"])
> lmM=lm(Weight[Gender=="Male"]~Height[Gender=="Male"])

> abline(lmF, col="red", lwd=2)
> abline(lmM, col="blue", lwd=2)

http://www.statmethods.net/advgraphs/parameters.html
http://www.statmethods.net/advgraphs/parameters.html

31 save your graph as a .png file
While it’s possible to copy/paste the
graph from the output window, saving
the graph in an image file format will
make it more efficient to work with,
and more professional-looking in your
documents.

First, use getwd() to make sure you
are saving to the correct destination.

Then, choose what format you want
to save your graph in; (pdf, types jpeg,
bmp, or tiff). In this example, we will
save the graph a .png file, using the
command png()

Next, enter the R command to
generate the graph you wish to save.
(NOTE: you will not see the graph in
the output window, since the
information that generates the graph
is being saved instead of being
displayed.)

Finally, type in the command
dev.off(), which saves the graph in
the file format you specified, and
writes the file to the location you
specified.

> getwd()
[1] "C:/Users/Your user name/Documents"

> png("weight height.png")

> plot(Weight~Height)

> dev.off()
windows
 2

