

Using R for Graphing Workshop Presenters：Jeremy Yagle and Jon Wayland

Spring 2013
\mathbf{R} is a free software downloadable at http：／／www．r－project．org／

Abstract

Notes： Code and Output：

01 R Console Setup：
＞prompts you for formula or function．
The result appears on the next line（s）．

02 R Use of the up－arrow：个

For many of the following commands we＇ll be using，it will be easier to use the up－arrow on the keyboard to have R recall our last typed command．
We＇ll remind you＇ll to do this with the green italicized text above the command．
03 file．choose（）command
We＇ll start by directing R to find the Excel file that contains the data for our graph．We do this with the file．choose（ ）command．After you type the first line and hit enter，R will pop up a window that allows you to select the file．Find the file US States
Education Rates．csv and double－click on it．

Next，we＇ll use attach（ ）to let R know that we want to work with this data． Use head（ ）to see the variable names．

＝ニニニニニニニニニニニニニニニニニニニニニニニニニニニ

Note：categories are listed in alphabetical order．Although we are not using it in these notes，you can change the order of the categories：

I．e．Instead of Region being ordered

 alphabetically＂MW＂，＂NE＂，＂S＂，＂W＂， you can change the order to：＂$N E$＂，$M W$＂，＂S＂，＂W＂
using the command：
Region＝factor（Region，levels＝c（＂NE＂， ＂MW＂，＂S＂，＂W＂））

You＇ll see this instruction before some of the commands that follow in later steps．Using the up arrow saves you typing time and helps prevent typographic errors．

Use the \uparrow key，and change only the highlighted areas below：
＞education＝read．csv（file．choose（））
$>$ attach（education）
＞head（education）
State Region Percent．HS．and．Above Percent．Bachelors．and．above
1 Alabama South $82.1 \quad 22.0$
2 Alaska West $91.4 \quad 26.6$
3 Arizona West 84.225 .6
4 Arkansas South $82.4 \quad 18.9$
5 California West 80.629 .9
6 Colorado West 89.35

Histograms	
10 create a histogram Use the hist() command to plot a histogram of all weights of the people in the data set.	> hist(Weight)
11 add a label and title Modify the command to include a title for the graph, and a label for the x axis. Use the arguments main=" " to name our title, and xlab=" " to label the axis.	Use the \uparrow key, and change only the highlighted areas below: > hist(Weight, main="All Weights", xlab="Weight in Pounds")
12 display available colors in R R has hundreds of available colors. To see a full listing of the color choices, use the colors() command. Just a sample of the colors is shown here.	> colors() [1] "white" "aliceblue" "antiquewhite" [4] "antiquewhite1" "antiquewhite2" "antiquewhite3" [7] "antiquewhite4" "aquamarine" "aquamarine1" ... (and a lot more!)... [655] "yellow3" "yellow4" "yellowgreen"
13 add color to the bars Add some color to our plot by using the col= argument. Here, we make chocolate-colored bars. You can experiment with other colors by changing the color name inside of the " ".	Use the \uparrow key, find this command, and change only the highlighted areas below: $\begin{aligned} & \text { > hist(Weight, main="All Weights", xlab="Weight in Pounds", } \\ & \text { col="chocolate") } \end{aligned}$
14 rotate numbers on the y-axis Use the las=1 argument to write all numbers on the axes parallel to the bottom of the plot. Default: las=0 : parallel to the axis	Use the \uparrow key, find this command, and change only the highlighted areas below: ```> hist(Weight, main="All Weights", xlab="Weight in Pounds", col="chocolate", las=1)```
15 increase the font size of the axes Use the cex.axs= and cex.lab= to amount by which the size of the axes numbers and labels should be scaled relative to the default. So 0.8 means 80% of the default size and 1.2 means 120% of the default size.	Use the \uparrow key, find this command, and change only the highlighted areas below: > hist(Weight, main="All Weights", xlab="Weight in Pounds", col="chocolate", las=1, cex.axis=1.2, cex.lab=1.2)

	Female Weights
Arranging two graphs on the same page	
Example: Two Histograms aligned in a 2 row $x 1$ column format	Male Weights
16 creating new vectors Create two new vectors; one for weights of all female subjects, and one for weights of male subjects. To exclude the missing values, use !is.na()	>fw=Weight[Gender=="Female" \& !is.na(Weight)] Use the \uparrow key, and change only the highlighted areas below: > mw=Weight[Gender=="Male" \& !is.na(Weight)]
17 divide the output window Use the par () command to change the set-up of the output window. By using mfrow=c(2,1), we divide the window into two rows. This will give us a top and bottom plot. We could make it side-by-side histograms if we change it to mfrow=c(1,2).	> $\operatorname{par}(\mathrm{mfrow}=\mathrm{c}(2,1))$
18 create top/bottom plots Using the hist () command, create 2 histograms in our output window one for females, and one for males. Note that as you enter commands, R automatically places the graph in the next open spot in the output window.	> hist(fw,main="Female Weights", xlab="Weight in lbs", col="pink") Use the \uparrow key, and change only the highlighted areas below: > hist(mw,main="Male Weights", xlab="Weight in lbs", col="light blue")
19 scaling and labeling the x-axis We can improve the quality of our graphs by keeping the scale of the x axis consistent for both of our categories (female/male). Here we set the scale with the $\mathbf{x l i m}=\mathbf{c}($) argument.	Use the \uparrow key to find the "Female Weights" command and change only the highlighted areas below: $\begin{aligned} & \text { > hist(fw,main="Female Weights", xlab="Weight in lbs", col="pink", } \\ & \mathbf{x l i m = c (1 0 0 , 2 0 0))} \end{aligned}$ Use the \uparrow key, and change only the highlighted areas below: $\begin{aligned} & \text { > hist(mw,main="Male Weights", xlab="Weight in Ibs", col="light blue", } \\ & \text { xlim=c(100,200)) } \end{aligned}$

	Boxplot
Side-by-side Boxplots	
20 Set the window to display one graph Change back to a single plot per figure.	>par(mfrow=c(1,1))
21 create a box plot Now, make a boxplot of the weights. When we use the \sim symbol in a command, we direct R to organize one variable in the data by another variable. (The \sim key is located to the left of the " 1 " key on the keyboard) The range= argument sets the whiskers to go to the last points that are within 1.5^{*} IQR of the quartiles	> boxplot(Weight~Gender, range=1.5)
22 scale the y-axis We can change the scaling of the y axis using the $y \lim =c()$ argument.	Use the \uparrow key, and change only the highlighted areas below: > boxplot(Weight~Gender, range=1.5, ylim=c(100,200))
23 add color Now, let's add in some color to the plots, using the col=" " argument.	Use the \uparrow key, and change only the highlighted areas below: > boxplot(Weight \sim Gender, range $=1.5$, ylim=c(100,200), col="grey")
24 add a title and axes labels	Use the \uparrow key, and change only the highlighted areas below: > boxplot(Weight~Gender, range=1.5, ylim=c(100,200),col="grey", main="Boxplot", xlab="Gender", ylab="Weight in lbs", las=1)
25 add a horizontal line at the overall mean Use the abline() command	>abline(h=mean(Weight, na.rm=T), col="red", lwd=2)

	Weight vs. Height
Scatter Plots	
26 create a scatter plot We can create a scatter plot of all heights vs. all weights using the features we used earlier	> plot(Weight~Height, las=1, main="Weight vs. Height", ylab="Weight in lbs", xlab="Height in inches")
27 Modify the plotting symbols The pch= argument directs R to choose from 25 different plotting symbols. Here, we're using two different types - triangles and crosses. For plotting symbols, see: http://www.statmethods.net/advgrap hs/parameters.html	Use the \uparrow key, and change only the highlighted areas below: > plot(Weight~Height,las=1,main="Weight vs. Height", ylab="Weight in lbs", xlab="Height in inches", col=c("red", "blue") , pch=2:3, cex=1.2)
28 add vertical grid lines Add grid lines to the graph using the grid() command. The first argument inside the parentheses is the condition for vertical bars, and the second is for the horizontal bars ($N A=$ off, $\mathrm{NULL}=$ aligned with scale values).	> grid(NA, NULL, col="darkgrey")
29 add grid lines in both directions By changing both arguments to NULL, we will have vertical and horizontal grid lines on the graph.	> grid(NULL, NULL, col="darkgrey")
30 add a fit line We can also add the fit lines to our graph for each gender. To do so, we first need to generate the line using the $\operatorname{Im}()$ command. We'll assign the result of that command to a variable we'll call ImF and ImM Now, we can put the line the on plot with the abline() command.	```> ImF=Im(Weight[Gender=="Female"]~ Height[Gender=="Female"]) > ImM=Im(Weight[Gender=="Male"]~Height[Gender=="Male"]) > abline(ImF, col="red", Iwd=2) > abline(ImM, col="blue", lwd=2)```

31 save your graph as a .png file While it's possible to copy/paste the graph from the output window, saving the graph in an image file format will make it more efficient to work with, and more professional-looking in your documents.

First, use getwd() to make sure you are saving to the correct destination.

Then, choose what format you want to save your graph in; (pdf, types jpeg, bmp, or tiff). In this example, we will save the graph a .png file, using the command png()

Next, enter the R command to generate the graph you wish to save. (NOTE: you will not see the graph in the output window, since the information that generates the graph is being saved instead of being displayed.)

Finally, type in the command dev.off(), which saves the graph in the file format you specified, and writes the file to the location you specified.
> getwd()
[1] "C:/Users/Your user name/Documents"
> png("weight height.png")
> plot(Weight~Height)
> dev.off()
windows
2

