Addressing Proximal Strength in the Management of Chronic Ankle Instability

Brent Smith, DHSc, ATC

Athletic Training Education Program
Department of Kinesiology
The Pennsylvania State University
University Park, PA
No disclosures
Background

- Lateral ankle injuries are the most common in athletic activities
- 16-21% of athletic injuries
- 28,000 ankle sprains occur daily

Background

- Some patients have prolonged or recurrent symptoms following initial injury.
- Clinicians spend valuable time in treating these recurrent injury and symptoms.
- Treatment strategies vary based on patient deficits.
Background

- Residual symptoms may include a feeling of “giving way” which is key factor in identification of Functional Ankle Instability (FAI) (Freeman, 1965).
 - Currently referred to as Chronic Ankle Instability (CAI)

- Individuals with CAI have deficits in proprioception, strength, and self-reported function (Arnold, Wright, & Ross, 2011; Hertel, 2000; Hertel, 2002).

- Individuals with CAI demonstrate hip weakness (Powers et al. 2004)
Background

- Proprioception and Neuromuscular Control
 - Force sense; Joint position sense; Kinesthesia
 - Contributes to Postural Control (Balance) (Riemann & Lepart, 2002)
 - Static Balance
 - Dynamic Balance

- Strength training effects neural factors (Moritani & DeVeries, 1979)
 - Ankle strengthening improves ankle joint position sense (Docherty, Moore, & Arnold, 1998)
Failing Rehabilitation

- Talar Tilt Stress Radiograph
Failing Rehabilitation

- Anterior Drawer Stress Radiograph

> 5 mm
Ankle Instability Paradigm (MAI vs. FAI)
Modified Brostrom
Arthrobrostrom
Current Trends

- CAI rehab protocols focus on ankle components despite multi-joint functions
 - 4-way ankle Theraband exercises

- Hip joint utilized during closed kinetic chain activities including postural control
 - Effect balance assessments

- Hip strengthening incorporated to address knee pathology (Ferber, Kendall, & Farr, 2011; Khayabashi et al. 2012)
 - Well established protocols for PFPS and ACL injury prevention
EBM and patient care

- EBP is the “tip of the iceberg” regarding patient care.
- EBP can be as overwhelming as the copious amount of research.
EBM and patient care

- EBP is the product and optimal practice approach
- Outcomes are the mechanism
- Disablement models are the Framework
Significance

- Adequate physical rehabilitation for CAI can improve quality of life
 - Improving hip strength can improved postural control
 - Reducing postural control deficits can improve symptoms associated with CAI
 - Improving symptoms of CAI can improve quality of life
Methods

- **Research Design**
 - Randomized controlled clinical trial

- **Study Participants**
 - 26 college aged subjects
 - Training group
 - 6 men, 7 women
 - Control group
 - 6 men, 7 women
 - Physically active
 - Unilateral FAI according to two discriminative tools
CAI Discrimination and EBM

- Ankle Instability Instrument - valid and reliable; history of later ankle sprain, giving way during at least 2 of 4 conditions
 (Docherty, Gansneder, Arnold, & Hurwitz, 2006)

- Cumberland Ankle Instability Tool - valid and reliable; 9-item, 30 point scale assessing severity of FAI; threshold score is 27.5
 (Hiller, Refshauge, Bundy, Herbert, & Kilbreath, 2006)

- Combination of All and CAIT most accurate
 (Donahue, Simon, & Docherty, 2011)
Participant Demographics

<table>
<thead>
<tr>
<th></th>
<th>Control Group (n = 13) Mean (SD), Minimum - Maximum</th>
<th>Training Group (n = 13) Mean (SD), Minimum - Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>20.9 (1.26), 19.0 – 23.0</td>
<td>20.1 (1.69), 18.0 – 25.0</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>171.0 (13.6), 152.0 – 194.0</td>
<td>164.5 (12.3), 153.5 – 194.0</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>76.554 (17.97), 54.0 – 121.6</td>
<td>78.51 (17.78), 56.2 – 118.8</td>
</tr>
</tbody>
</table>
Procedures

- Demographic data collected

- Pre-testing for all subjects (counterbalanced)
 - Foot and Ankle Ability Measure
 - Balance Error Scoring System
 - Star Excursion Balance Test
 - Hip strength
 - External Rotation
 - Abduction

- Participants were randomly assigned to either training or control group after meeting criteria
Self-Reported Function

- **Foot and Ankle Ability Measure** - reliable and valid for subjects with instability (Carcia, Martin, & Drouin, 2008)
 - Activities of Daily Living Subscale
 - 21-item 5-point Likert scale
 - Sport subscale
 - 8-item 5-point Likert scale

- Higher score represent a higher level of function
Static Balance Assessment

- **Balance Error Scoring System (BESS)**
 (Riemann, Guskiewicz & Shields, 1999)
 - 3 stances on 2 surfaces

- Reliable and valid for screening static balance in individuals with FAI
 (Dochtery, Valovich McLoed, & Shultz, 2006)
Dynamic Balance Assessment

- Star Excursion Balance Test
 (Kinzey & Armstrong, 1998)

 Reliable and valid for screening dynamic balance in individuals with ankle instability (Olmstead, Carcia, Hertel, & Shultz, 2002)
Hip Strength Assessment

- **Hand-held dynamometer**
 - Reliable for hip strength assessment
 (Thorborg, Petersen, Magnusson, & Holmich, 2010)
 - External Rotation
 - Abduction
Strength Training Procedures

- **Training Group**: Theraband supervised 4 weeks, 3 times per week
 - External Rotation
 - Abduction

- **Control Group**: no change to previous activity

- **Post-test**: Same protocol as pre-test
Hip ER Strengthening Protocol

<table>
<thead>
<tr>
<th>Week</th>
<th>Tubing</th>
<th>Sets x Reps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Green</td>
<td>3x20</td>
</tr>
<tr>
<td>2</td>
<td>Blue</td>
<td>3x20</td>
</tr>
<tr>
<td>3</td>
<td>Black</td>
<td>3x20</td>
</tr>
<tr>
<td>4</td>
<td>Silver</td>
<td>3x20</td>
</tr>
</tbody>
</table>
Hip Abduction Strengthening Protocol

<table>
<thead>
<tr>
<th>Week</th>
<th>Tubing</th>
<th>Sets x Reps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Green</td>
<td>3x20</td>
</tr>
<tr>
<td>2</td>
<td>Blue</td>
<td>3x20</td>
</tr>
<tr>
<td>3</td>
<td>Black</td>
<td>3x20</td>
</tr>
<tr>
<td>4</td>
<td>Silver</td>
<td>3x20</td>
</tr>
</tbody>
</table>
Strength dependent variables- two separate Repeated Measures Analysis of Variance (RMANOVA) was conducted

- One within factor (test: pre and post) and one between factor (group: training and control).

FAAM-ADL and FAAM-sport scores dependent variables-a RMANOVA to analyze the primary outcome indicators

- One within factor (test: pre and post) and one between factor (group: training and control).
BESS dependent variable, a RMANOVA was conducted

- One between factor (group: training and control) and one within factor (test: pre and post) for the total error scores.

Three directions (anterior, posteriomedial, posteriolateral) of the SEBT dependent variable, a RMANOVA was conducted

- between factor (group: training and control) and within factors (test: pre and post).
Results

- Primary findings indicate that the hip strengthening protocol:
 - Increases hip strength in abduction and external rotation directions
 - Improves dynamic balance as measured by the SEBT
 - Improves static balance as measured by the BESS
 - Improve self-reported function as measured by the FAAM
Strength Testing

<table>
<thead>
<tr>
<th></th>
<th>Pretest (N)</th>
<th>Post-test (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abduction strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training group</td>
<td>360.1 ± 71.7</td>
<td>446.3 ± 77.4†</td>
</tr>
<tr>
<td>Control group</td>
<td>313.7 ± 56.9</td>
<td>314.7 ± 49.6</td>
</tr>
<tr>
<td>External rotation strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training group</td>
<td>173.5 ± 36.9</td>
<td>222.1 ± 48.7†</td>
</tr>
<tr>
<td>Control group</td>
<td>166.6 ± 40.5</td>
<td>169.4 ± 34.6</td>
</tr>
</tbody>
</table>
Neuromuscular Control

<table>
<thead>
<tr>
<th></th>
<th>Pretest</th>
<th>Post-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training group</td>
<td>23.92 ± 9.1 errors</td>
<td>9.9 ± 6.3 errors†</td>
</tr>
<tr>
<td>Control group</td>
<td>22.77 ± 6.1 errors</td>
<td>21.15 ± 6.3 errors</td>
</tr>
<tr>
<td>SEBT-A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training group</td>
<td>85.7 ± 8.6 cm</td>
<td>93.1 ± 7.4 cm†</td>
</tr>
<tr>
<td>Control group</td>
<td>89.2 ± 7.6 cm</td>
<td>90.2 ± 7.8 cm</td>
</tr>
<tr>
<td>SEBT-PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training group</td>
<td>83.9 ± 10.9 cm</td>
<td>96.3 ± 8.9 cm†</td>
</tr>
<tr>
<td>Control group</td>
<td>86.0 ± 9.8 cm</td>
<td>88.0 ± 8.8 cm</td>
</tr>
<tr>
<td>SEBT-PL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training group</td>
<td>83.0 ± 14.1 cm</td>
<td>95.4 ± 11.1 cm†</td>
</tr>
<tr>
<td>Control group</td>
<td>84.4 ± 10.6 cm</td>
<td>86.6 ± 9.6 cm</td>
</tr>
</tbody>
</table>
Self-reported Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Pretest (%)</th>
<th>Post-test (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAAM-ADL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training group</td>
<td>85.9 ± 11.7</td>
<td>92.4 ± 12.3</td>
</tr>
<tr>
<td>Control group</td>
<td>91.6 ± 7.8</td>
<td>93.8 ± 6.9</td>
</tr>
<tr>
<td>FAAM-Sport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training group</td>
<td>72.1 ± 16.8</td>
<td>88.0 ± 10.9 †</td>
</tr>
<tr>
<td>Control group</td>
<td>84.6 ± 9.2</td>
<td>84.8 ± 10.9</td>
</tr>
</tbody>
</table>

† Indicates a statistically significant difference compared to the training group.
Effects on Strength

- Proximal muscle strengthening improves balance and postural control
 - Abdominal training (Gage, 2009)
 - Hip strengthening (Piegaro, 2003)

- Hip strengthening increases hip strength is in agreement with previous research (Dolak, et al., 2011; Khayabashi, et al., 2012; Leavey, et al., 2010; Willy & Davis, 2011).

- Our strength increases were less than other studies

- Speculation that longer protocol produces greater gains
Effects on Neuromuscular Control

- In agreement with previous literature demonstrating proprioceptive improvements following strengthening (Blackburn, et al., 2000; Docherty, et al., 1998)
- Hip strengthening improving static and dynamic balance in agreement with previous research (Leavey, et al., 2010; Saxena, et al., 2012)
Effects on Self-reported Outcomes

- In agreement with previous studies demonstrating interventions improve outcomes for individuals with FAI (Hale, et al., 2007; Rozzi, et al., 1999; Schaefer & Sandrey, 2012).
- In agreement seeing improved outcomes following hip strengthening provides improvement
 - PFPS (Khayabaski, et al., 2012)
Conclusion

- The 4-week hip strength training protocol increased hip strength in participants with chronic ankle instability.
- The protocol also improved static and dynamic balance.
- Hip strengthening improves sport related self-reported function in participants with CAI.
- It is still unclear if hip strengthening can improve functions related to activities of daily living in individuals with CAI.
- Clinical practice should incorporate proximal muscle strengthening for individuals with CAI.

Thank you